COVID-19-Impfstoff

In diesem Artikel befassen wir uns mit COVID-19-Impfstoff, einem Thema, das die Aufmerksamkeit von Experten und Hobbyisten gleichermaßen erregt hat. COVID-19-Impfstoff ist ein Thema, das in der heutigen Gesellschaft Gegenstand von Debatten ist und das Interesse verschiedener Disziplinen und Sektoren geweckt hat. Im Laufe der Geschichte war COVID-19-Impfstoff der Protagonist wichtiger Ereignisse, die die Entwicklung der Menschheit geprägt haben, und seine Relevanz hält auch in der heutigen Welt an. Durch eine detaillierte, multidisziplinäre Analyse wollen wir die vielen Aspekte beleuchten, die COVID-19-Impfstoff zu einem so faszinierenden und bedeutsamen Thema machen. Durch die Erforschung seiner Ursprünge, Implikationen und Zukunftsprognosen hoffen wir, dem Leser ein tieferes und umfassenderes Verständnis von COVID-19-Impfstoff zu vermitteln und so seine Perspektive und sein Wissen zu diesem faszinierenden Thema zu erweitern.

Impffortschritt weltweit: Anteil der vollständig Geimpften
Impffortschritt weltweit: Impfdosen je 100 Personen

Ein COVID-19-Impfstoff (englisch COVID-19 vaccine), auch als SARS-CoV-2-Impfstoff und umgangssprachlich als Corona-Impfstoff bezeichnet, ist ein Impfstoff (Vakzin) gegen das seit 2019 auftretende Coronavirus SARS-CoV-2, das die COVID-19-Pandemie auslöste. Ziel der Impfstoffentwicklung ist es, durch Impfung eine adaptive Immunantwort im geimpften Organismus zu erzeugen, die vor einer Infektion mit dem Virus und damit vor der Erkrankung COVID-19 schützt. 50 COVID-19-Impfstoffe wurden bereits weltweit als Arzneimittel zugelassen, 8 davon in der Europäischen Union; 172 Impfstoffkandidaten befanden sich im September 2022 in klinischen Studienphasen und 199 in der präklinischen Entwicklungsphase.

Immunologie

Modell eines SARS-CoV-2-Virions mit türkisfarbenen Spikes
Arten von SARS-CoV-2-Impfstoffen

Wirkungsweise der Impfstoffe

Zentrale Antigene des SARS-CoV-2 (die Zielmoleküle, gegen die eine Immunantwort ausgelöst werden soll) bei der Impfstoffentwicklung sind zwei Proteine der Virushülle, das Spike-Glykoprotein und das Membranprotein (M) sowie im Virusinneren das Nukleokapsidprotein.

Alle zugelassenen und fast alle in Entwicklung befindlichen Impfstoffe verwenden das S-Glykoprotein des SARS-CoV-2 als Antigen. Dieses Protein auf der Virusoberfläche wird von SARS-CoV-2 verwendet, um an Zellen anzudocken. Daher können Antikörper gegen dieses Protein erzeugt werden, die zusätzlich zur Aktivierung von Immunzellen neutralisierend wirken, d. h. die Bindung des Virus an die Zelloberfläche blockieren und somit eine Infektion der Zelle hemmen. Die Impfwirkung führt bei allen zugelassenen SARS-CoV-2-Impfstoffen zu einer starken Abnahme des Risikos für schwere Krankheitsverläufe von COVID-19. Ebenso entstehen bei Geimpften nach Infektion mildere Verläufe von Long COVID. Die Weitergabe (Transmission) durch infizierte geimpfte Personen wird bei Infektionen mit der Delta-Variante des SARS-CoV-2 gesenkt, was sich in niedrigerer Viruslast und verkürztem Zeitfenster der Transmission äußert. Kriterien für die Impfstoffentwicklung von SARS-CoV-2-Impfstoffen sind die Minimierung unerwünschter Immunreaktionen, eine Eignung für die Impfung erwachsener Mitarbeiter im Gesundheitssystem, eine Eignung für die Impfung von Menschen mit Risikofaktoren (Menschen über 60 Jahren oder mit Diabetes mellitus oder Bluthochdruck) und eine Eignung zur Bevorratung, wie sie in der Priorisierung der COVID-19-Impfmaßnahmen diskutiert werden.

Das S-Glykoprotein ist in seiner Funktion ein fusogenes Protein, das dem Virus ermöglicht, nach Aufnahme in eine Zelle das Endosom zu verlassen. Als fusogenes Protein kann es mindestens zwei Proteinfaltungen einnehmen: vor und nach der Fusion mit der Endosomenmembran. Die Faltungsform vor der Fusion ist diejenige, die das Virus vor der Aufnahme in eine Zelle aufweist und gegen die eine Immunantwort ausgebildet werden soll. Manche SARS-CoV-2-Impfstoffe verwenden als Antigen eine Variante des S-Glykoproteins, die zwei geänderte Proline in der Nähe der Fusionsdomäne aufweist, welche die Proteinfaltung vor der Membranfusion stabilisieren (engl. 2P-prefusion-stabilised). Bei der 2P-Variante wurden zwei Aminosäuren gegen Proline getauscht: an Position 1060 war zuvor ein Valin, an Position 1061 war zuvor ein Leucin. Die 2P-Variante wurde für Coronaviren erstmals beim MERS-CoV beschrieben. Die Analogie der 2P-Variante bei SARS-CoV-2 wurde bestätigt.

Alle derzeit in Europa zugelassenen Impfstoffe gegen SARS-CoV-2 werden mittels einer intramuskulären Injektion verabreicht (Stand: November 2021). In Indien wurde ein DNA-Impfstoff namens ZyCoV-D zugelassen, der per nadelfreier Injektion angewendet wird. Eine weitere mögliche Alternative und Ergänzung dazu sind Impfstoffe, die auf die Nasen- oder Mundschleimhaut aufgebracht werden, um die lokale Immunabwehr in Nase und Rachen zu trainieren, wodurch der Antikörpersubtyp der Schleimhäute (Immunglobulin A) gebildet wird und bereits in den viralen Eintrittspforten der Schleimhäute vorkommt. Im Idealfall könnte so eine sterile Immunität erzeugt werden, bei der die Weitergabe des Virus verhindert wird. Als erster Impfstoff gegen SARS-CoV-2 wird Razi Cov Pars in der dritten Dosis intranasal verabreicht. Alle anderen Impfstoffe dieses Typs befinden sich bislang noch in der Entwicklungsphase (Stand: November 2021). Berechnungen zufolge wurden im ersten Jahr der zugelassenen Impfstoffe durch die Impfungen gegen SARS-CoV-2 weltweit zwischen 14,4 (anhand der veröffentlichten Totenzahlen) und 19,8 (anhand der Übersterblichkeit) Millionen Menschen vor einem tödlichen COVID-19-Krankheitsverlauf geschützt.

Immunreaktionen gegen SARS-CoV-2

SARS-CoV-2 ist ein behülltes, nicht-segmentiertes RNA-Virus. Gegen zwei Proteine der Virushülle (S-Glykoprotein und Membranprotein) des nahe verwandten SARS-CoV wurden neutralisierende Antikörper beschrieben. Neutralisierende Antikörper gegen das S-Glykoprotein sind hauptsächlich für einen Schutz vor Infektion durch SARS- oder MERS-CoV verantwortlich, jedoch ist die Ursache für einen Schutz vermutlich vom Impfstofftyp, den verwendeten Antigenen, den Tiermodellen und der Applikationsform abhängig. Im S-Glykoprotein des SARS-CoV-2 wurden für den Menschen 13 Epitope für MHC I (erzeugen eine zelluläre Immunantwort) und 3 für MHC II (erzeugen eine humorale Immunantwort) identifiziert. Konservierte Epitope wurden im S-Glykoprotein und im Nukleokapsidprotein identifiziert, die sich für breitenwirksame Impfstoffe eignen könnten. Es gibt in Mäusen eine Kreuzreaktivität von neutralisierenden Antikörpern gegen das S-Glykoprotein, die sowohl den Zelleintritt von SARS-CoV als auch von SARS-CoV-2 hemmen. Beide SARS-assoziierten Viren verwenden den gleichen Rezeptor zum Zelleintritt, das Angiotensin-konvertierende Enzym 2 (ACE2), während MERS-CoV die Dipeptidylpeptidase 4 (CD26) verwendet. Zahlreiche ACE-2-Rezeptoren finden sich beim Menschen auch im Darmbereich, in Gefäßzellen, in der Herzmuskulatur sowie in der Niere. Das S-Glykoprotein wird in zwei Untereinheiten unterteilt, S1 und S2. S1 enthält die Rezeptorbindungsdomäne und bedingt die Bindung an die Wirtszelle. S2 ist für die Fusion mit der Zellmembran verantwortlich. Die Bindungsaffinität des SARS-CoV-2 zum ACE-2-Rezeptor ist etwa 10 bis 20 mal so stark wie die des SARS-CoV. Es gab im März 2020 keine monoklonalen Antikörper gegen die Rezeptor-bindende Proteindomäne (RBD) des S-Glykoproteins von SARS-CoV, die nennenswerte Bindungsaffinität gegen SARS-CoV-2 aufwiesen. In der folgenden Zeit wurde bei der Immunreaktion gegen SARS-CoV-2 beobachtet, dass die Immunität mit der Konzentration neutralisierender Antikörper korreliert. Allerdings ist diese Korrelation nichtlinear, denn 3 % Neutralisationswirkung eines Genesenenserums im Neutralisationstest entsprechen 50 % Schutz vor schwerer Erkrankung und 20 % Neutralisationswirkung entsprechen 50 % ohne messbare Virustiter (d. h. mit sterilisierender Immunität). Die biologische Halbwertszeit der durch Impfung gebildeten neutralisierenden Antikörper betrug für die RNA-Impfstoffe von Biontech und Moderna in den ersten vier Monaten 65 Tage und anschließend für die folgenden acht Monate 108 Tage. Der Beitrag der zellulären Immunantwort zum Schutz vor Erkrankung und der Schutz vor neuen Virusvarianten wurde in dieser Studie nicht untersucht.

Bindende Antikörper werden per ELISA gemessen, neutralisierende im Neutralisationstest. Um die Resultate der Antikörpermessungen besser vergleichen zu können, wurde von der WHO für die Bestimmung der Menge der neutralisierenden Antikörper die Einheit IU/ml (International Units / ml) und für die bindenden Antikörper die Einheit BAU/ml (Binding Antibody Units / ml) vorgeschlagen.

Fluchtmutationen

Ein Problem bei der Impfstoffentwicklung ist die hohe Mutationsrate von einigen RNA-Viren, wodurch der Impfstoff wie beim Influenzaimpfstoff fortlaufend an die sich verändernden zirkulierenden Virusstämme angepasst werden muss oder nur einen Teil der zirkulierenden Virusstämme abdeckt. Es wurde befürchtet, dass die Wirkung der Covid-19-Impfstoffe gegen neue Varianten von SARS-CoV-2, die durch Fluchtmutationen im Gen für das Spike-Protein entstehen, vermindert sein könnte, so dass trotz Impfung erneute Infektionen häufiger werden. Für eine geminderte Immunität gegen Fluchtmutanten ist entscheidend, ob die Mutationen im Bereich der immundominanten Epitope des Antigens auftreten, nicht still sind und in einer schlechteren Wiedererkennung durch das Immunsystem resultieren – erst dann sind es Fluchtmutationen. Durch die zufällige Mutation der RNA des SARS-CoV-2 in Bereichen, gegen die eine Immunantwort wirkt, entstehen Fluchtmutanten. Die Rezeptor-bindende Proteindomäne des S-Glykoproteins (als Antigen zur Erzeugung neutralisierender Antikörper) ist der variabelste Teil des SARS-CoV-2. Der Stamm D614G ist mit etwa 85 % der im November 2020 dominierende globale SARS-CoV-2-Stamm. Fast alle Stämme mit dieser D614G-Mutation zeigen auch Mutationen in Replikationsproteinen wie beispielsweise ORF1ab P4715L und RdRp P323L. Diese wiederum sind die Angriffspunkte für einige Medikamente wie Remdesivir und Favipiravir. Dadurch, dass die zugelassenen Impfstoffe eine Immunantwort gegen mehrere Epitope des Spike-Glykoproteins hervorrufen, ist der Einfluss einer Fluchtmutation in nur einem Epitop auf die gesamte Immunantwort gegen SARS-CoV-2 in der Regel gering. Während ursprünglich alle Impfstoffhersteller die Sequenz des Wuhan-Stammes von SARS-CoV-2 verwendeten, haben alle Hersteller zugelassener Impfstoffe neue Kandidaten in klinischer Prüfung, die an zirkulierende SARS-CoV-2 angepasst sind.

Bei den RNA-Impfstoffen BNT162b2 (Biontech/Pfizer) und mRNA-1273 (Moderna) wurde in Laborstudien eine geringere Zahl von neutralisierenden Antikörpern, die gegen die SARS-CoV-2-Variante Beta wirksam sind, festgestellt: beim Biontech-Impfstoff um weniger als den Faktor 2, beim Moderna-Impfstoff um den Faktor 6. In einer Doppelblindstudie wurden die Sicherheit und Wirksamkeit des Impfstoffs von AstraZeneca bei jungen Erwachsenen (Median: 30 Jahre, oberes/unteres Quartil: 24 bzw. 40 Jahre) untersucht. Die Ansteckungszahlen und die Zahlen milder bis mittelschwerer Krankheitsverläufe zeigten, dass das Vakzin gegen die Beta-Variante nur minimal (nicht signifikant) besser als ein Placebo wirkt. Wegen der niedrigen Datenbasis der Studie ist noch keine Aussage zum Schutz vor schweren Verläufen möglich. Der zeitliche Abstand zwischen beiden Impfdosen in der Studie lag bei 3 bis 5 Wochen. Empfohlen werden jedoch für eine stärkere Immunantwort 9 bis 12 Wochen.

Infektionsverstärkende Antikörper (ADE)

Bei SARS-CoV und MERS-CoV wurden unerwünschte infektionsverstärkende Antikörper (Antibody-dependent Enhancement, ADE) gegen Proteine in der Virushülle beschrieben. Diese können auch bei SARS-CoV-2 vermutet werden und sind ein potenzielles Sicherheitsrisiko bei der Entwicklung der COVID-19-Impfstoffe, allerdings hat sich diese Sorge in Anbetracht der intensiven Forschung nicht bestätigt. Zur Vermeidung infektionsverstärkender Antikörper gegen das S-Glykoprotein kann vermutlich mit verkürzten Varianten immunisiert werden, wie die RBD oder die S1-Untereinheit des S-Glykoproteins.

Bei zwei Impfstoffen gegen SARS-CoV auf Basis des ganzen Virus wurde eine Immunpathogenese der Lungenbläschen durch die Einwanderung von Eosinophilen und Typ-2-T-Helferzellen beobachtet. Die Immunpathogenese konnte bei einem SARS-CoV-Impfstoff durch Zugabe eines bestimmten Adjuvans (ein delta-Inulin-basiertes Polysaccharid) vermieden werden.

Notwendiger Herdenschutz

Neben dem Schutz des Geimpften soll mit einer Impfung auch die Weitergabe an Dritte (Transmission) gemindert werden, um SARS-CoV-2 analog zum Pockenvirus ausrotten zu können (Eradikation). Dafür ist ein Mindestmaß an Immunität in einer Population notwendig. Der zu impfende Mindestanteil einer Bevölkerung zum Erreichen eines Herdenschutzes  berechnet sich aus der Basisreproduktionszahl und der Impfstoffwirksamkeit gegen Transmission  (nicht zu verwechseln mit der Impfstoffwirksamkeit gegen schwere Krankheitsverläufe):

Unter der Annahme, dass für SARS-CoV-2 die Basisreproduktionszahl R0 ≈ 2,87 ist, wäre der notwendig zu impfende Mindestanteil der Bevölkerung 93,1 % bei einem Impfstoff, der die Transmission um 70 % senkte. Bei der Delta-Variante müssten mit einem R0 von nahezu 7 bei ansonsten gleicher Annahme 122,4 % aller Menschen geimpft werden. Da nicht mehr als 100 % geimpft werden können, wäre ein Herdenschutz damit nicht mehr erreichbar.

Ebenso kann die Mindestwirksamkeit gegen Transmission berechnet werden:

Unter der Annahme von R0 ≈ 2,87 ist die notwendige Mindestwirksamkeit gegen Transmission 86,9 %, wenn 75 % der Bevölkerung geimpft werden können. Wenn 100 % der Bevölkerung geimpft werden könnten, wäre die notwendige Mindestwirksamkeit gegen Transmission 65,2 %. Bei der Delta-Variante mit einem R0 von nahezu 7 wäre bei einer Impfquote von 100 % bereits eine Mindestwirksamkeit gegen Transmission von 85,7 % nötig. Weniger wirksame Impfstoffe führen nicht zu einer Eradikation. Die Auswirkung der SARS-CoV-2-Impfung auf die Transmission wird untersucht.

Herdenschutz und Ansteckungsfähigkeit

Eines der Ziele der Impfung ist der Herdenschutz, der auch Herdenimmunität genannt wird. Im September 2020 nahm man dafür eine notwendige Durchimpfungsrate der Bevölkerung von mindestens 55 bis 60 Prozent an. Im Dezember ging die Weltgesundheitsorganisation (WHO) für die zu diesen Zeitpunkt verbreiteten Virusvarianten von einer notwendigen Durchimpfungsrate von mindestens 60 bis 70 Prozent aus. Anfang 2021 ging das Leibniz-Institut für Präventionsforschung und Epidemiologie wegen der neuen Varianten davon aus, dass ungefähr 80 % der Menschen geimpft sein müssten, um die Pandemie zum Erliegen zu bringen. Es komme jedoch auch auf die Art und Dauer der bewirkten Immunität und die Homogenität ihrer Verteilung in der Bevölkerung an.

Insbesondere müsste die Impfung durch Erzeugen einer sterilen Immunität auch die Übertragung des Erregers auf Dritte verhindern. Lange Zeit war nicht sicher, in welchem Umfang und für welche Dauer die bisher entwickelten SARS-CoV-2-Impfstoffe diese Kontagiosität verhindern könnten. In Tierversuchen bei geimpften Affen wurden trotz ausbleibender Symptome nach einer erneuten Exposition Viruspartikel in der Nase nachgewiesen. Der Direktor des Paul-Ehrlich-Instituts, Klaus Cichutek, war im Dezember 2020 noch optimistisch: „Wir gehen davon aus, dass bei einer Verminderung der schweren Verläufe doch auch zumindest eine Reduktion der Viruslast in den oberen Atemwegen passiert.“ Im Februar 2021 zeigte eine Studie mit Praxisdaten zum AstraZeneca-Impfstoff, dass die Übertragung des Virus nach der zweiten Impfdosis um 50 Prozent verringert werde. „Selbst 50 Prozent sind eine signifikante Verringerung“, erklärte AstraZeneca-Forschungschef Mene Pangalos.

Seit 31. Mai 2021 ist in der EU auch ein Vakzin für Kinder und Jugendliche ab 12 Jahren zugelassen.

Das Robert Koch-Institut dämpfte im Juli 2021 die hohen Erwartungen an die Herdenimmunität: Es sei zweifelhaft, ob die dafür bisher angenommenen Schwellenwerte für COVID-19 realistisch seien. Vielmehr sei es möglich, dass es je nach zugrundegelegten Parametern „selbst bei einer 100 %igen Impfquote nicht gelingen“ könnte, den Erreger zu eliminieren. Es sei jedoch ein realistisches Ziel, eine breite Grundimmunität in der Bevölkerung zu erreichen, durch die auf individueller Ebene das Auftreten schwerer Erkrankungsfälle deutlich reduziert und auf der Populationsebene die Viruszirkulation erheblich verringert werde. Hendrik Streeck, Direktor des Instituts für Virologie und HIV-Forschung an der Medizinischen Fakultät der Universität Bonn, ordnete dies im Juli 2021 so ein: „Mit diesen Impfstoffen werden wir keine Herdenimmunität erreichen. Bei immer mehr Menschen, die geimpft sind, können wir im Rachen das Virus nachweisen.“ Man schütze mit der Impfung vor allem sich selbst vor einem schweren Verlauf der Krankheit Covid-19. Ende Juli 2021 konkretisierte das Robert Koch-Institut: „Die Vorstellung des Erreichens einer ‚Herdenimmunität‘ im Sinne einer Elimination oder sogar Eradikation des Virus ist jedoch nicht realistisch.“

Ansteckungsfähigkeit nach Impfung

Die Impfung schütze andere ungeimpfte Haushaltsangehörige indirekt zu 40–60 % vor Ansteckung – so noch das Fazit der beiden Mitte Juli 2021 von Public Health England zitierten Studien auf Basis ermittelter Daten von Jahresbeginn 2021, vor der Verbreitung der Delta-Variante. Die Ende Juli 2021 vorherrschende Delta-Variante kann nach einem bestätigten internen Dokument der CDC aber auch von geimpften Personen weitergegeben werden. Zwei Haushaltskontakt-Studien aus Großbritannien und den Niederlanden zeigen, dass geimpfte Index-Fälle die Delta-Variante mit einer geringeren Wahrscheinlichkeit übertragen, abhängig vom Impfstoff und der Zeit, die seit der Impfung verstrichen ist.

Die sich Ende 2021 ausbreitende Variante Omikron sei sehr leicht übertragbar und führe auch bei vollständig Geimpften und Genesenen häufig zu Infektionen, die weitergegeben werden können, so das RKI am 21. Dezember.

Die Eindämmung der Virus-Übertragung kann mit den vorhandenen Impfstoffen nur bedingt gelingen, weil die Impfstoffe keinen nennenswerten Immunschutz direkt in den Schleimhäuten erzeugen, sondern so konzipiert sind, dass sie vor allem die Geimpften selbst vor symptomatischer Erkrankung schützen. Da Geimpfte mit der Delta-Variante angesteckt werden können und Dritte anstecken können, sind Dritte nicht in dem Maße durch Impfungen anderer Personen vor Ansteckung und vor einem schweren Krankheitsverlauf oder langfristigen Folgen wie Long COVID geschützt, wie es bei den meisten Impfungen gegen andere Erreger der Fall ist. Dadurch, dass das Immunsystem von Geimpften das Virus schneller bekämpfen kann, sind sie jedoch wohl nicht so lange infektiös wie Ungeimpfte und erkranken auch weniger oft symptomatisch (Husten, Niesen), wodurch sich eine gewisse Schutzwirkung auch gegenüber anderen ergibt. Andererseits kann sich ein falsches Sicherheitsgefühl einstellen, wodurch Geimpfte sich anderen gegenüber nicht mehr so vorsichtig verhalten. Deshalb rät das RKI auch Geimpften dazu, sich weiter an die Abstands- und Hygieneregeln (AHA) zu halten.

Impfstoffentwicklung

Vorentwicklung auf Basis SARS-CoV und MERS-CoV

Impfstoffe sind die effektivsten präventiven Maßnahmen gegen Infektionskrankheiten. Bereits seit Jahren wird daher an Impfstoffen gegen Coronaviren geforscht, unter anderem gegen HCoV-HKU1, HCoV-NL63, HCoV-OC43, HCoV-229E, SARS-CoV und MERS-CoV. Es gibt verschiedene verfügbare Impfstoffe für Tiere gegen Coronaviren, beispielsweise gegen das Aviäre Coronavirus (bei Vögeln), das Canine Coronavirus (bei Hunden) und das Feline Coronavirus (bei Katzen). Für die humanpathogenen Coronaviren SARS-CoV und MERS-CoV existieren experimentelle Impfstoffe, die im Tierversuch getestet wurden. Gegen SARS-CoV und gegen MERS-CoV wurden bis 2019 insgesamt vier Impfstoffe am Menschen mit abgeschlossenen klinischen Studien untersucht. Alle vier Impfstoffe waren sicher und immunogen. Sechs weitere Impfstoffe befanden sich 2019 in klinischen Studien. Keiner hat jedoch bisher eine Arzneimittelzulassung für den Menschen. Gründe dafür liegen beim MERS-CoV im Fehlen kostengünstiger Tiermodelle, im nur noch sporadischen und lokalen Vorkommen des Virus und in der daraus resultierenden fehlenden Investitionsbereitschaft. Bei SARS-CoV traten nach 2004 keine neuen Infektionen mehr auf. Erst mit der COVID-19-Pandemie ab 2020 wurden Coronavirusimpfstoffe wieder dringlich. Dank der oben genannten, bereits erfolgten Forschung konnte hierbei auf bestehendem Wissen aufgebaut und so schnell ein Impfstoff auch gegen SARS-CoV-2 entwickelt werden. Hierbei wurde auch auf die neue Technologie der RNA-Impfstoffe gesetzt, die aus einer Messenger-RNA (mRNA) bestehen, die für eines oder mehrere virale Proteine codieren. Deren Entwicklung und Herstellung kann wesentlich schneller vonstattengehen als bei herkömmlichen Impfstoffen. Zuvor fanden bereits seit mehreren Jahren Tests von RNA-Impfstoffen gegen andere Krankheiten in klinischen Studien am Menschen statt.

Spezifische Impfstoffentwicklung für SARS-CoV-2

Forschung zu einem Impfstoff in Japan

Ab Ende Januar 2020 begannen unter anderem das Chinesische Zentrum für Krankheitskontrolle und Prävention, die Universität Hongkong (nasal angewendet), das Shanghai-Ost-Krankenhaus und andere Universitäten wie die Washington University in St. Louis mit der Impfstoffentwicklung. Sechs Impfstoffentwickler wurden im März 2020 von der Coalition for Epidemic Preparedness Innovations (CEPI) unterstützt, darunter Curevac, Moderna (zusammen mit dem National Institute of Allergy and Infectious Diseases), Inovio Pharmaceuticals (zusammen mit dem Wistar Institute und Beijing Advaccine Biotechnology), die University of Queensland (zusammen mit dem Adjuvantienhersteller Dynavax), die University of Oxford und Novavax. Anfang März 2020 kündigte CEPI die Bereitstellung von zwei Milliarden US-Dollar zur Entwicklung von SARS-CoV-2-Impfstoffen an, die durch verschiedene öffentliche und private Organisationen finanziert werden, darunter unter Beteiligung von Deutschland, Dänemark, Finnland, Großbritannien und Norwegen.

Debatte über Belastungsstudien

Im Verlauf der COVID-19-Pandemie wurde vorgeschlagen, die Dauer der Arzneimittelzulassung durch Belastungsstudien zu verkürzen. Eine Belastungsstudie besteht aus einer Impfung mit nachfolgender gezielter Infektion zur Überprüfung der Immunität und des Schutzes vor Infektion und Erkrankung. Belastungsstudien wurden bei verschiedenen anderen Infektionskrankheiten am Menschen durchgeführt wie Grippe, Typhus, Cholera und Malaria. Während Belastungsstudien am Menschen ethisch problematisch sind und deren ethische Aspekte im Allgemeinen wenig erforscht sind, könnte die Anzahl der COVID-19-Toten dadurch weltweit reduziert werden. Daher wurden in Bezug auf SARS-CoV-2 ethische Richtlinien für Belastungsstudien am Menschen entwickelt. Durch Belastungsstudien können die üblicherweise über mehrere Jahre laufenden klinischen Studien der Phasen II und III auf wenige Monate verkürzt werden. Nach einem ersten Nachweis der Arzneimittelsicherheit und -wirksamkeit eines Impfstoffkandidaten im Tierversuch und anschließend in gesunden Menschen (< 100 Menschen) können Belastungsstudien eingesetzt werden, um eine klinische Studie der Phase III zu überspringen. Belastungsstudien an Menschen beinhalten die Impfung und spätere Infektion von zuvor nicht infizierten, risikoarmen Freiwilligen im Vergleich zu einer mit Placebo-geimpften vergleichbar zusammengesetzten Gruppe als Negativkontrolle. Anschließend erfolgt bei Bedarf eine Überwachung der Patienten in Kliniken, die SARS-CoV-2-Medikamente zur Behandlung bereithalten.

Citizen Science

Am 27. Februar 2020 kündigte das Citizen-Science-Projekt Folding@home an, die Impfstoffentwicklung zur Aufklärung der Struktur des Spike-Proteins von SARS-CoV-2 voranzutreiben. Über Folding@home können Interessierte einen Teil ihrer Computerleistung der Molekülmodellierung zur Verfügung stellen. Über BOINC kann man auch den Volunteer-Computing-Projekten Rosetta@home, World Community Grid und TN-Grid Computerleistung zur Aufklärung der Struktur von SARS-CoV-2-Proteinen zur Verfügung stellen. Weiterhin bietet das experimentelle Computerspiel Foldit Interessierten die Möglichkeit, Wissenschaftlern bei der Aufklärung von SARS-CoV-2-Proteinen zu helfen.

Weiterentwicklung gegen Virusvarianten

Bisher ist keine Virus-Mutation aufgetaucht, gegen die die bisher zugelassenen Impfstoffe nicht mehr wirken (sog. „Escape-Variante“). Auch gegen die Delta-Variante sind die Impfstoffe weiterhin gut wirksam, wenn auch nicht ganz so effektiv wie gegen den ursprünglichen Wildtyp. Allerdings arbeiten mehrere Forschungsgruppen schon jetzt an möglichen weiterentwickelten Impfstoffen der „zweiten Generation“, die noch besser gegen bereits existierende Varianten, vor allem aber gegen eine mögliche Fluchtmutation wirken sollen. Auch mehrere Phase-III-Studien dazu sind bereits angelaufen. Insbesondere mit der mRNA-Technik ist eine solche Anpassung sehr schnell möglich, allerdings stehen dem sofortigen Einsatz noch regulative Hürden entgegen. Zudem sind Impfstoffe in der Entwicklung, die speziell immunsupprimierte Personen schützen oder eine sterile Immunität erzeugen sollen.

Zulassungsverfahren

Wie alle Arzneimittel werden auch COVID-19-Impfstoffe vor ihrer Anwendung einer klinischen Prüfung unterzogen, bevor die Arzneimittelzulassung – länderweise oder staatsübergreifend – bei der jeweils zuständigen Behörde beantragt werden kann. In der EU ist die Europäische Arzneimittelagentur (EMA) für die Zulassung von Arzneimitteln und somit auch von Impfstoffen gegen COVID-19 zuständig. Diese werden nach aktuellen wissenschaftlichen Erkenntnissen und geltenden behördlichen Richtlinien und gesetzlichen Anforderungen entwickelt, bewertet und zugelassen. Obwohl dieser Prozess bei den Coronaimpfstoffen schneller als üblich erfolgte, wurde hierbei (in Europa) kein Prüfschritt ausgelassen, verkürzt oder vereinfacht. Der Grund für die Schnelligkeit lag stattdessen insbesondere in neuer und verbesserter Technologie, bereits bestehendem Vorwissen durch SARS-CoV-1, erheblicher finanzieller Unterstützung sowie der parallelen Durchführung der Prüfphasen (siehe auch Rolling-Review-Verfahren). Für die Zulassung von Arzneimitteln allgemein und in diesem Fall speziell von Impfstoffen gegen COVID-19 ist das Nutzen-Risiko-Verhältnis von entscheidender Relevanz. Wenn eine signifikante Wirksamkeit bzw. Immunogenität nachgewiesen wurde und der Nutzen ein mögliches Risiko durch eventuelle schwere Nebenwirkungen überwiegt, erfolgt die Zulassung eines Impfstoffs.

Stufen der Impfstoff-Zulassung von Entwicklung bis Produktion

Die breite Anwendung eines COVID-19-Impfstoffes außerhalb von klinischen Studien bedarf allgemein einer speziellen Genehmigung in Form einer Zulassung. Diese erteilt auf Antrag die zuständige Arzneimittelbehörde, wenn sie das Nutzen-Risiko-Verhältnis als positiv erachtet. Voraussetzung ist üblicherweise die umfassende klinische Prüfung, in der die Wirksamkeit bzw. Immunogenität nachgewiesen und schwere Nebenwirkungen ausgeschlossen wurden (Phase-3-Studie), sowie der Nachweis der einwandfreien und reproduzierbaren Produktqualität. Darüber hinaus ist in bestimmten Ländern auch die Genehmigung der ausnahmsweisen Anwendung eines nicht lizenzierten Impfstoffes möglich („Notfallzulassung“). Sie basieren auf nationalen rechtlichen Sonderregelungen, die beim Vorliegen eines Notfalls im Bereich der öffentlichen Gesundheit greifen, und umfassen bspw. die Notfallgebrauchszulassung (Emergency use authorization) in den USA oder das befristete Inverkehrbringen gemäß „Regulation 174A(2) of the Human Medicine Regulations“ im Vereinigten Königreich (UK) bzw. gemäß § 79 (5) Arzneimittelgesetz (AMG) in Deutschland. Eine rasche Zulassung nach einem ordentlichen Zulassungsverfahren wie in der Schweiz und in der Europäischen Union (EU) wurde möglich durch die bereits vor Antragstellung einsetzende, fortlaufende Beurteilung von vorgelegten Unterlagen (Rolling-Review). Zudem wird die Zulassung für den Zulassungsinhaber an Bedingungen geknüpft (bedingte Zulassung). Die Bedingungen beinhalten, dass Daten, die zum Zeitpunkt der Zulassung noch nicht vollständig vorlagen – wie beispielsweise spezielle Details zu Ausgangsstoffen und Endprodukt oder der endgültige klinische Studienbericht – innerhalb einer vorgegebenen Frist nachgereicht werden müssen. Auch eine bedingte Zulassung gewährleistet, dass das Sicherheitssystem für Arzneimittel der EU vollumfänglich greift. Kritik erntete Russland mit seinem Vorgehen, basierend auf Daten von 76 Probanden, bereits mit dem Impfen der Bevölkerung mit Gam-COVID-Vac (Sputnik V) zu beginnen, als die 3. Studienphase erst startete. Ebenso gab es in Indien um die Notfallzulassung eines Impfstoffes der Firma Bharat Biotech eine Kontroverse, weil die klinischen Studien noch nicht abgeschlossen waren.

Ein von einer sogenannten strengen Regulierungsbehörde zugelassener Impfstoff kann bei der WHO für die Präqualifizierung (PQ), das heißt einer zweiten Überprüfung der klinischen und pharmazeutischen Daten, eingereicht werden. Ein erfolgreich durchlaufenes Präqualifizierungsverfahren ermöglicht Organisationen wie dem Kinderhilfswerk der Vereinten Nationen (UNICEF) oder der Panamerikanischen Gesundheitsorganisation (PAHO), den Impfstoff zu erwerben und – etwa über die COVAX-Initiative – weltweit auch ärmeren Ländern zugänglich zu machen. Besteht ein Notfall im Bereich der öffentlichen Gesundheit, wie etwa eine Pandemie, kann bereits vor der PQ die Prüfung des Impfstoffs über das Emergency-Use-Listing-Verfahren (EUL) der WHO beantragt werden.

Als erster Impfstoff weltweit wurde in Russland bereits im August 2020 der Vektorimpfstoff Gam-COVID-Vac („Sputnik V“) zugelassen, jedoch ohne die Phase-III-Studien mit Zehntausenden Probanden abzuwarten. Insgesamt wurden seitdem 47 Impfstoffe in mindestens einem Staat zugelassen.

Von der WHO wurden die RNA-Impfstoffe Tozinameran (Biontech/Pfizer) und Elasomeran (Moderna/NIAID), die Vektorimpfstoffe AZD1222 (AstraZeneca/Oxford bzw. Covishield vom Serum Institute of India), Ad26.COV2.S (Janssen / Johnson & Johnson) und Ad5-nCoV (CanSino), die Totimpfstoffe BBIBP-CorV (Sinopharm), CoronaVac (Sinovac) und BBV152 (Bharat Biotech) sowie die Protein-Untereinheitenimpfstoffe NVX-CoV2373 (Novavax bzw. Covovax vom Serum Institute of India) und GBP510 (SK Bioscience) in die Liste von Impfstoffen für den Notfallgebrauch aufgenommen („WHO-Notfallzulassung“). Diese WHO-Notfallzulassungen werden in Ländern ohne eigene Arzneimittelprüfung genutzt. Weitere Impfstoffe sind in der Prüfung.

Eine vollständige Zulassung hat die Europäische Kommission bislang für die Impfstoffe VLA2001 (Valneva), Tozinameran (Biontech/Pfizer), Elasomeran (Moderna/NIAID), AZD1222 (AstraZeneca/Oxford), Vidprevtyn (Sanofi/GSK), Ad26.COV2.S (Janssen/Johnson & Johnson) und Bimervax (Hipra) erteilt. Der Impfstoff NVX-CoV2373 (Novavax) erhielt eine bedingte Zulassung. Zuvor hatte die Europäische Arzneimittel-Agentur (EMA) deren jeweilige Sicherheit und Wirksamkeit positiv bewertet.

Das Wissenschaftsmagazin Science erklärte die Entwicklung von Impfstoffen gegen das SARS-CoV-2 in nie da gewesener Geschwindigkeit zum Breakthrough of the Year 2020, dem wissenschaftlichen Durchbruch des Jahres. Im Zuge der Impfstoffentwicklung gegen SARS-CoV-2 wurden die weltweit ersten RNA- (Tozinameran) und DNA-Impfstoffe (ZyCoV-D) für Menschen zugelassen.

Am 1. September 2022 erteilte die Europäische Kommission zwei an die Omikron-Variante von SARS-CoV-2 angepassten mRNA-Impfstoffen die Zulassung für die Auffrischungsimpfung, nachdem der Ausschuss für Humanarzneimittel (CHMP) der EMA ein entsprechende Empfehlung abgegeben hatte. Es handelt sich um die bivalenten Impfstoffe Comirnaty Original/Omicron BA.1 (Biontech/Pfizer) und Spikevax bivalent Original/Omicron BA.1 (Moderna). Diese neu zugelassenen COVID-19-Impfstoffe sind jeweils auf den ursprünglichen, erstmals in Wuhan nachgewiesenen Wildtyp von SARS-CoV-2 und dessen Omikron-Subvariante BA.1 abgestimmt.

Zugelassene Impfstoffe

Liste der zugelassenen Impfstoffe

Für folgende Impfstoffe wurden Notfallzulassungen/Zulassungen erteilt (Feld-Hintergrundfarbe  Zulassung in der EU):

Impfstoff­klasse Name Entwickler Zugelassen in Alters­gruppen Impf­schema Applikations­form Lagerung Studien
mRNA-Impfstoff (Liposom-umhüllt) Tozinameran
BNT162b2
Comirnaty
Deutschland Biontech
Vereinigte StaatenVereinigte Staaten Pfizer
China Volksrepublik Fosun Pharma
140+ Staaten (incl. EU) ab 5 Jahren 2 Dosen mit Abstand von 3–6 Wochen intra­muskulär −70 °C
(1 Monat: bis 8 °C)
Teilnehmer:
Phase 2/3: 30.000
Phase 3: 43.661

Publikationen:
Phase 1/2:
doi:10.1038/s41586-020-2639-4
Phase 3:
doi:10.1056/NEJMoa2034577

Elasomeran
MRNA-1273
Spikevax
TAK-919
Vereinigte StaatenVereinigte Staaten Moderna 100+ Staaten (incl. EU) ab 6 Jahren 2 Dosen mit Abstand von 4–6 Wochen intra­muskulär −20 °C
(30 Tage: bis 8 °C)
Teilnehmer:
Phase 3: 30.000

Publikationen:
Phase 1:
doi:10.1056/NEJMoa2022483

GEMCOVAC-19 Indien Gennova Biopharmaceuticals (Emcure) Indien Indien (28. Juni 2022) ab 18 Jahren 2 Dosen mit Abstand von 4 Wochen intra­muskulär 2–8 °C
ARCoV
AWcorna
China Volksrepublik Walvax Biotechnology
China Volksrepublik Suzhou Abogen Biosciences
China Volksrepublik Akademie für Militärwissenschaften der Volksbefreiungsarmee
Indonesien Indonesien (30. September 2022) intra­muskulär 2–8 °C
SW-BIC-213 China Volksrepublik Stemirna Therapeutics Laos Laos (8. Dezember 2022)
SYS6006 China Volksrepublik CSPC Pharmaceutical Group China Volksrepublik Volksrepublik China (22. März 2023) intra­muskulär 2–8 °C
Daichirona
DS-5670
JapanJapan Daiichi Sankyō Japan Japan (2. August 2023) intra­muskulär 2–8 °C
sa-mRNA-Impfstoff ARCT-154
Kostaive
Vereinigte StaatenVereinigte Staaten Arcturus Therapeutics
AustralienAustralien CSL Seqirus (CSL)
Japan Japan (November 2023) ab 18 Jahren 2 Dosen intra­muskulär
DNA-Impfstoff (Plasmid) ZyCoV-D Indien Zydus Cadila
Indien Biotechnology Industry Research Assistance Council
Indien Indien (20. August 2021) ab 12 Jahren 3 Dosen mit Abstand von 4 Wochen intra­kutan 2–8 °C Teilnehmer:
Phase 2: 1.000
Phase 3: 28.000 (bei Zulassung noch nicht publiziert)
Nicht­replizierender
viraler Vektor
(Adenovirus)
AZD1222
ChAdOx1 nCoV-19
Vaxzevria
Covishield
R-COVI
KconecaVac
Vereinigtes KonigreichVereinigtes Königreich SchwedenSchweden AstraZeneca
Vereinigtes KonigreichVereinigtes Königreich University of Oxford
Vereinigtes KonigreichVereinigtes Königreich Vaccitech
170+ Staaten (incl. EU) ab 18 Jahren 2 Dosen mit Abstand von 4–12 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 1/2: 1.112 in UK
Phase 3: 30.000

Publikationen:
Phase 1/2:
doi:10.1016/S0140-6736(20)31604-4

Ad26.COV2.S
JNJ-78436735
Jcovden
Belgien Janssen Pharmaceutica (Johnson & Johnson) 120+ Staaten (incl. EU) ab 18 Jahren 1 Dosis intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 60.000 reduziert auf 40.000.

Publikationen:
Phase 1/2a:
doi:10.1056/NEJMoa2034201

Sputnik V
Gam-COVID-Vac
RusslandRussland Gamaleja-Institut für Epidemiologie und Mikrobiologie 70+ Staaten 2 Dosen mit Abstand von 3 Wochen intra­muskulär −18 °C Teilnehmer:
Phase 1/2: 76
Phase 3: 40.000

Publikationen:
Phase 1/2:
doi:10.1016/S0140-6736(20)31866-3

Sputnik Light RusslandRussland Gamaleja-Institut für Epidemiologie und Mikrobiologie 20+ Staaten 1 Dosis intra­muskulär 2–8 °C
Ad5-nCoV
Convidecia
PakVac
China Volksrepublik CanSino Biologics
China Volksrepublik Beijing Institute of Biotechnology
China Volksrepublik Volksrepublik China (25. Juni 2020)
Mexiko Mexiko (10. Februar 2021)
Pakistan Pakistan (12. Februar 2021)
Ungarn Ungarn (22. März 2021)
Chile Chile (7. April 2021)
Argentinien Argentinien (11. Juni 2021)
Ecuador Ecuador (15. Juni 2021)
Malaysia Malaysia (15. Juni 2021)
Indonesien Indonesien (7. September 2021)
1 Dosis intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 40.000

Publikationen:
Phase 1:
doi:10.1016/S0140-6736(20)31208-3
Phase 2:
doi:10.1016/S0140-6736(20)31605-6

Salnavac RusslandRussland Generium Russland Russland (5. Juli 2022) 2 Dosen mit Abstand von 3 Wochen intra­nasal
Ad5-nCoV-IH
Convidecia Air
China Volksrepublik CanSino Biologics China Volksrepublik Volksrepublik China (5. September 2022)
Marokko Marokko (10. November 2022)
1 Dosis inhalativ 2–8 °C
iNCOVACC
BBV154
Indien Bharat Biotech Indien Indien (7. September 2022) ab 18 Jahren 2 Dosen intra­nasal 2–8 °C
Inaktiviertes Virus
(Totimpfstoff)
BBIBP-CorV
BIBP-CorV
Covilo
Hayat-Vax
China Volksrepublik Beijing Institute of Biological Products (Sinopharm) 110+ Staaten ab 3 Jahren 2 Dosen mit Abstand von 3–4 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 15.000

Publikationen:
Phase 1/2:
doi:10.1001/jama.2020.15543

CoronaVac China Volksrepublik Sinovac Biotech 60+ Staaten ab 3 Jahren 2 Dosen mit Abstand von 2 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 8.870
Phase 3: 11.303

Publikationen:
Phase 2:
doi:10.1101/2020.07.31.20161216

Covaxin
BBV152
Indien Bharat Biotech
Indien Indian Council of Medical Research (ICMR)
10+ Staaten ab 6 Jahren 2 Dosen mit Abstand von 4 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 25.800
QazCovid-In
QazVac
Kasachstan Kazakh Research Institute for Biological Safety Problems Kasachstan Kasachstan (13. Januar 2021)
Kirgisistan Kirgisistan (18. August 2021)
2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 1/2: 244
CoviVac RusslandRussland Tschumakow-Forschungszentrum der Russischen Akademie der Wissenschaften 3 Staaten 2 Dosen mit Abstand von 2 Wochen intra­muskulär 2–8 °C
WIBP-CorV China Volksrepublik Wuhan Institute of Biological Products (Sinopharm) China Volksrepublik Volksrepublik China (25. Februar 2021)
Philippinen Philippinen (19. August 2021)
2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C
KCONVAC China Volksrepublik Minhai Biotechnology
China Volksrepublik Shenzhen Kangtai Biological Products
China Volksrepublik Volksrepublik China (14. Mai 2021)
Indonesien Indonesien (November 2021)
2 Dosen mit Abstand von 4 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 28.000
Covidful China Volksrepublik Chinesische Akademie der Medizin­wissenschaften China Volksrepublik Volksrepublik China (9. Juni 2021) 2 Dosen mit Abstand von 2 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 34.020
COVIran Barekat Iran Barkat Pharmaceutical
Iran Shifa Pharmed Industrial
Iran Iran (13. Juni 2021) 2 Dosen mit Abstand von 4 Wochen intra­muskulär 2–8 °C
FakhraVac Iran Organisation für Verteidigungs­innovation und -forschung Iran Iran (9. September 2021) 2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C
Turkovac
Erucov-Vac
Turkei Erciyes Universität
Turkei Health Institutes of Turkey
Turkei Türkei (22. Dezember 2021) intra­muskulär 2–8 °C
VLA2001 FrankreichFrankreich Valneva
Vereinigte StaatenVereinigte Staaten Dynavax Technologies
30+ Staaten (incl. EU) 18 bis 50 Jahre 2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 1: 153
Phase 3: 4670
Untereinheiten­impfstoff (Peptid) EpiVacCorona RusslandRussland Staatliches Forschungs­zentrum für Virologie und Biotechnologie VECTOR 3 Staaten 2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C
EpiVacCorona-N
Aurora-CoV
RusslandRussland Staatliches Forschungs­zentrum für Virologie und Biotechnologie VECTOR Russland Russland (26. August 2021) 18 bis 60 Jahre 2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C
Untereinheiten­impfstoff (Protein, konjugiert) Soberana-2
FINLAY-FR-2
Pasteurcovac
Kuba Instituto Finlay de Vacunas
Kuba BioCubaFarma
Iran Pasteur Institute of Iran
3 Staaten ab 2 Jahren 2 Dosen im Abstand von 4 Wochen + 1 Dosis Soberana Plus intra­muskulär 2–8 °C Teilnehmer:
Phase 2a: 100
Phase 2b: 900
Phase 3: 44.000
Soberana Plus Kuba Instituto Finlay de Vacunas
Kuba BioCubaFarma
2 Staaten intra­muskulär 2–8 °C
Untereinheiten­impfstoff (Rekombinantes Protein in virusartigen Partikeln) NVX-CoV2373
Nuvaxovid
Covovax
TAK-019
Vereinigte StaatenVereinigte Staaten Novavax 40+ Staaten (incl. EU) ab 12 Jahren 2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 1: 131
Phase 2: 2904
Phase 3: 9000

Publikationen:
Phase 1/2:
doi:10.1056/NEJMoa2026920

CoVLP
Covifenz
Kanada Medicago
Vereinigtes KonigreichVereinigtes Königreich GlaxoSmithKline
Kanada Kanada (24. Februar 2022) ab 18 Jahren 2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 1: 180
Phase 2/3: 30.612
Untereinheiten­impfstoff (Rekombinantes Protein) ZF2001
Zifivax
RBD-Dimer
China Volksrepublik Anhui Zhifei Longcom Biofarmaceutical
China Volksrepublik Chinesische Akademie der Wissenschaften
Usbekistan Usbekistan (1. März 2021)
China Volksrepublik Volksrepublik China (15. März 2021)
Indonesien Indonesien (7. Oktober 2021)
3 Dosen mit Abstand von 30 Tagen intra­muskulär 2–8 °C Teilnehmer:
Phase 2: 900
Phase 3: 29.000
MVC-COV1901 Taiwan Medigen Vaccine Biologics
Vereinigte StaatenVereinigte Staaten Dynavax Technologies
3 Staaten 2 Dosen mit Abstand von 4 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 5120
COVAX-19
SpikoGen
AustralienAustralien Vaxine Pty Ltd
Iran Cinnagen
Iran Iran (6. Oktober 2021) 2 Dosen mit Abstand von 3 Wochen intra­muskulär 2–8 °C
Razi Cov Pars Iran Razi Vaccine and Serum Research Institute Iran Iran (1. November 2021) 3 Dosen mit Abstand von 21 Tagen und 51 Tagen intra­muskulär,
intra­nasal
2–8 °C
Corbevax
BECOV2D
Vereinigte StaatenVereinigte Staaten Baylor College of Medicine
Vereinigte StaatenVereinigte Staaten Texas Children’s Hospital
Indien Biological E
Indien Indien (28. Dezember 2021)
Botswana Botswana (28. März 2022)
ab 5 Jahren 2 Dosen mit Abstand von 4 Wochen intra­muskulär 2–8 °C
NVSI-06-07 China Volksrepublik China National Biotec Group (Sinopharm) Vereinigte Arabische Emirate Vereinigte Arabische Emirate (28. Dezember 2021) intra­muskulär
Noora Iran Baqiyatallah Universität der Medizinischen Wissenschaften Iran Iran (1. März 2022) 3 Dosen mit Abstand von 3 und 2 Wochen intra­muskulär 2–8 °C
GBP510
SKYCovione
SKYCovion
Korea Sud SK Bioscience (SK Group)
Vereinigte StaatenVereinigte Staaten University of Washington Institute for Protein Design
2 Staaten ab 18 Jahren 2 Dosen mit Abstand von 4 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 1/2: 328
Phase 3: 4037

Publikationen:
Phase 1/2:
doi:10.1016/j.eclinm.2022.101569
Phase 3:
doi:10.1016/j.ijid.2023.04.344

V-01 China Volksrepublik Livzon Pharmaceutical China Volksrepublik Volksrepublik China (2. September 2022) intra­muskulär
IndoVac Vereinigte StaatenVereinigte Staaten Baylor College of Medicine
Vereinigte StaatenVereinigte Staaten Texas Children’s Hospital
Indonesien PT Bio Farma
Indonesien Indonesien (Oktober 2022) intra­muskulär
VidPrevtyn Beta
VAT00008
FrankreichFrankreich Sanofi Pasteur
Vereinigtes KonigreichVereinigtes Königreich GlaxoSmithKline
Europaische Union Europäische Union (10. November 2022)
Vereinigtes Konigreich Vereinigtes Königreich (21. Dezember 2022)
ab 18 Jahren intra­muskulär 2–8 °C Teilnehmer:
Phase 1/2: 440
Phase 3: 35.000
SCB-2019 China Volksrepublik Clover Biopharmaceuticals
Vereinigte StaatenVereinigte Staaten Dynavax Technologies
China Volksrepublik Volksrepublik China (Dezember 2022) intra­muskulär
Bimervax
PHH-1V
SpanienSpanien Hipra Europaische Union Europäische Union (30. März 2023)
Vereinigtes Konigreich Vereinigtes Königreich (1. August 2023)
ab 16 Jahren intra­muskulär 2–8 °C
Coviccine China Volksrepublik WestVac Biopharma
China Volksrepublik Sichuan-Universität
China Volksrepublik Volksrepublik China (8. Juni 2023) intra­muskulär
Untereinheiten­impfstoff (Protein) Abdala
CIGB-66
Kuba Centro de Ingeniería Genética y Biotecnología
Kuba BioCubaFarma
5 Staaten ab 2 Jahren 3 Dosen mit Abstand von 2 Wochen intra­muskulär 2–8 °C Teilnehmer:
Phase 3: 48.290

Auf Basis von inaktivierten Viren

BBIBP-CorV, Covilo, Hayat-Vax (Sinopharm)

Die Volksrepublik China teilte in der dritten Septemberwoche 2020 mit, einen der Testimpfstoffe ihrer staatseigenen Sinopharm-Konzerngruppe an die Vereinigten Arabischen Emirate zu liefern. Bis dahin hatten bereits Teile des Militärs und anderes Regierungspersonal in China den Impfstoff erhalten. Auch dieser Impfstoff hatte, wie der russische Sputnik V, die Phase III zu diesem Zeitpunkt noch nicht abgeschlossen. Phase-III-Tests mit dem chinesischen Wirkstoff waren bis dahin mit Argentinien, Bahrain, Brasilien, Bangladesch, Ägypten, Indonesien, Jordanien, Marokko, Peru, Russland und Saudi-Arabien vereinbart. Im Januar 2021 teilte die chinesische Regierung in CCTV mit, dass über ein Notfallprogramm bereits ungefähr zehn Millionen Menschen geimpft worden sind. Die im Mai 2021 von der WHO für die Gruppe von 18 bis 59 Jahren als hochwertig eingestufte Phase-III-Studie mit rund 13.000 geimpften Probanden zeigte eine Reduktion des Risikos einer symptomatischen COVID-Erkrankung um 78,1 %.

CoronaVac (Sinovac Biotech)

Von Mitte April 2020 bis Anfang Mai 2020 wurden die Phase-I- und Phase-II-Studie in Suining (Xuzhou) in der chinesischen Provinz Jiangsu durchgeführt. Nach dem erfolgreichen Abschluss und der Veröffentlichung der Ergebnisse in The Lancet wurde die Phase-III-Studie in Brasilien, Chile, Indonesien und der Türkei durchgeführt. Die Türkei bestätigte eine Effektivität des chinesischen Impfstoffs von 91,25 %. Präsident Erdoğan kündigte am 12. Januar 2021 den Impfstart an. Kurz davor hatte bereits Indonesien diesen Impfstoff zugelassen; die erste Spritze bekam der Präsident.

Chile hat (Stand Mitte April 2021) mehr als 40 Prozent seiner Bevölkerung (8 Millionen von 19 Millionen) mindestens einmal geimpft und fast 30 Prozent bereits zweimal. Etwa 90 Prozent der in Chile verimpften Dosen kommen von Sinovac. Dennoch erfasste Chile bereits vor Erreichen eines signifikanten Impffortschritts Ende Februar 2021 eine zweite Welle, die erst Mitte April ihren Höhepunkt erreichte (→ COVID-19-Pandemie in Chile#Statistik). Der Impfstoff wird außerdem in Indonesien, Thailand, in der Ukraine und der Türkei eingesetzt.

BBV152, Covaxin (Bharat Biotech)

BBV152, auch als Covaxin bezeichnet, ist ein Totimpfstoff, der gemeinsam von der Firma Bharat Biotech und dem Indian Council of Medical Research entwickelt wurde. Eine Phase-III-Studie an Erwachsenen begann im November 2020. Der Impfstoff wurde Anfang Januar 2021 in Indien zugelassen.

Am 3. November 2021 erteilte die WHO dem Impfstoff BBV152 eine Notfallzulassung, nachdem die WHO-eigene Strategische beratende Expertengruppe für Immunisierung (Strategic Advisory Group of Experts on Immunization, SAGE) den Impfstoff am 5. Oktober 2021 begutachtet hatte. Die SAGE empfahl die Impfung für die Altersgruppe ≥ 18 Jahre und eine zweimalige Impfung im Abstand von vier Wochen. Studien hatten eine schützende Wirkung von 78 % gegen COVID-19-Erkrankung jedweder Schwere ergeben. Aufgrund seiner Stabilität bei Kühlschranktemperatur (4 bis 8 °C) wurde der Impfstoff als besonders für Entwicklungs- und Schwellenländer gut geeignet beurteilt. BBV152 (Covaxin) war der achte von der WHO zugelassene COVID-19-Impfstoff.

VLA2001 (Valneva)

Der Valneva-COVID-19-Impfstoff VLA2001 ist ein klassischer Totimpfstoff des französischen Biotechnologieunternehmens Valneva auf Basis inaktivierter Viren. Er wurde durch die EMA im Juni 2022 in der EU zugelassen.

Gegen das Coronavirus kommen neuartige Impfstoffe zum Einsatz. Dieses Video zeigt, wie die Impfung mit einem Vektorimpfstoff funktioniert.

Auf Basis von Protein

NVX-CoV2373, Nuvaxovid, Covovax (Novavax)

NVX-CoV2373, mit Handelsnamen in der EU als Nuvaxovid bezeichnet, ist als Impfstoff ein SARS-CoV-2 rS-Protein-Nanopartikel (rekombinante Spikes) mit Matrix-M1-Adjuvans. Er wurde vom US-amerikanischen Pharmaunternehmen Novavax und der Coalition for Epidemic Preparedness Innovations (CEPI) entwickelt. Eine vollständige Impfung erfordert zwei Dosen. Am 20. Dezember 2021 erteilte die EU-Kommission basierend auf der Empfehlung der Europäischen Arzneimittel-Agentur (EMA) die bedingte Zulassung des Impfstoffs.

Auf Basis von viralen Vektoren

AZD1222, Covishield, Vaxzevria (AstraZeneca / Oxford)

Impfung mit AstraZeneca in Osttimor (Apr. 2021)

AZD1222 (Handelsnamen Vaxzevria, Covishield) ist ein von der Universität von Oxford und deren ausgegründeter Firma Vaccitech entwickelter und von AstraZeneca produzierter Impfstoff. Er verwendet einen nicht-replizierenden viralen Vektor, hergestellt auf Basis eines abgeschwächten Adenovirus (Erkältungsvirus), das Schimpansen befällt. Adenoviren werden von der Europäischen Arzneimittel-Agentur (EMA) als „nicht-integrierend“ eingestuft; das heißt, sie besitzen keinen aktiven Mechanismus zur Integration ihrer DNA in das Genom der Wirtszelle.

Am 23. November 2020 stellte AstraZeneca ein kombiniertes Zwischenergebnis aus einer Phase-2/3-Studie in Großbritannien sowie einer Phase-3-Studie in Brasilien vor. Demnach würde im Schnitt eine Wirksamkeit von 70 Prozent, je nach Dosierungsschema sogar eine Effektivität von 90 Prozent erreicht. Drei Tage später wurde eine Unstimmigkeit bei der Errechnung des Wirkungsgrades bekannt. Daraufhin kündigte das Unternehmen eine zusätzliche Studie an, bei der die Wirksamkeit des Vakzins validiert werden soll. Probanden hatten in den vorangegangenen klinischen Studien zunächst eine halbe Dosis und einen Monat später eine volle Dosis des Impfstoffes erhalten. Dabei zeigte das Vakzin eine Wirksamkeit von 90 Prozent. Andere Testpersonen hatten zweimal den vollen Wirkstoff erhalten; die Wirksamkeit des Vakzins lag dabei jedoch nur bei 62 Prozent.

Als erstes Land ließ Großbritannien am 30. Dezember 2020 den Impfstoff im Rahmen einer Notfallzulassung zu. Seither folgten weitere Notfallzulassungen. Am 29. Januar 2021 wurde eine bedingte Marktzulassung in der Europäischen Union (EU) erteilt.

Im Jahr 2021 sollen bis zu drei Milliarden Dosen des Impfstoffs hergestellt werden. Am 21. Januar 2021 kündigte AstraZeneca der EU an, im 1. Quartal 2021 statt mehr als 80 Millionen nur 31 Millionen Dosen liefern zu können. Als Grund wurden Produktionsprobleme genannt.

Anfang Februar 2021 stellte eine Studie eine nur begrenzte Wirkung gegen die erstmals in Südafrika festgestellte Beta-Variante fest. Geplante Impfungen zur Bekämpfung der COVID-19-Pandemie in Südafrika wurden daraufhin eingestellt. Fachleute kritisierten diesen Schritt, da eine schlechte Schutzwirkung (gerade gegen schwere Verläufe) noch nicht wissenschaftlich nachgewiesen sei.

Bis zum 10. März 2021 wurden im Europäischen Wirtschaftsraum (EWR) 30 Fälle von thromboembolischen Ereignissen bei fast 5 Millionen mit Vaxzevria geimpften Menschen an das von der EMA betriebene Informationsnetzwerk und Managementsystem EudraVigilance gemeldet; die Zahl der thromboembolischen Ereignisse bei geimpften Personen war damit nach Aussage der EMA bis dahin nicht höher als in der Allgemeinbevölkerung.

Unterbrechung und Einschränkung der AZD1222-Impfungen

Am 15. März 2021 wurden die Impfungen mit dem AstraZeneca-Impfstoff AZD1222 in Deutschland auf Empfehlung des Paul-Ehrlich-Instituts (PEI) unterbrochen, nachdem dies bereits in einigen anderen europäischen Ländern geschehen war. Klaus Cichutek, der Präsident des Instituts, sprach von einer auffälligen Häufung einer speziellen Form von sehr seltenen Hirnvenenthrombosen, die in Verbindung mit einem Mangel an Thrombozyten (Blutplättchen) – einer Thrombozytopenie – aufgetreten sind, und von Blutungen, die ebenfalls in zeitlicher Nähe zu den Impfungen stünden. Am 18. März 2021 gab die EMA bekannt, dass der Nutzen des Impfstoffs den potenziellen Gefahren bei weitem überlegen sei, woraufhin Deutschland am nächsten Tag die Impfungen mit AZD1222 wieder aufnahm. Nach dem Auftreten weiterer Fälle empfahl die Ständige Impfkommission (STIKO) beim PEI Ende März 2021, den Impfstoff nur noch für Menschen ab 60 Jahren einzusetzen und die Zweitimpfung bei Jüngeren mit einem anderen Impfstoff durchzuführen. Die Europäische Arzneimittel-Agentur (EMA) sah bisher hingegen keinen Grund für solche Einschränkungen.

Bislang (Stand 30. März 2021) wurden 31 Fälle einer speziellen Form der Hirnvenenthrombose – eine Sinusvenenthrombose – diagnostiziert. Bei einer Hirnvenenthrombose handelt es sich um eine sehr schwere Krankheit, die schwer zu behandeln ist. Von den 31 betroffenen Personen – 2 Männer und 29 Frauen im Alter zwischen 20 und 63 Jahren – verstarben 9. Die Anzahl der Fälle von Hirnvenenthrombosen, die im zeitlichen Zusammenhang mit einer AZD1222-Impfung auftraten, ist nach Einschätzung des PEI statistisch signifikant höher als die Anzahl der Hirnthrombose-Fälle, die in der ungeimpften Bevölkerung im gleichen Zeitraum zu erwarten gewesen seien; ein Fall sei zunächst zu erwarten gewesen, sieben Fälle seien aber initial gemeldet worden. (Bei der verwendeten Observed-versus-Expected-Analyse wurde die Anzahl der ohne Impfung erwarteten Fälle in einem Zeitfenster von 14 Tagen der Anzahl der gemeldeten Fälle nach etwa 1,6 Millionen AstraZeneca-Impfungen in Deutschland gegenübergestellt.) Bei dem von schwerwiegenden Hirnvenenthrombosen mit Blutplättchenmangel betroffenen Personenkreis in jüngerem bis mittlerem Alter handelt es sich nicht um den Personenkreis, bei dem bisher bei einer COVID-19-Erkrankung ein hohes Risiko für einen schweren, unter Umständen tödlichen Verlauf dieser Infektionskrankheit bestand. Spezialisten des PEI und weitere Experten, die zur Bewertung der in zeitlichem Zusammenhang mit den AZD1222-Impfungen aufgetretenen Fälle von Hirnvenenthrombose herangezogen wurden, kamen einstimmig zu dem Schluss, „dass hier ein Muster zu erkennen ist und ein Zusammenhang der gemeldeten o.g. Erkrankungen mit der AstraZeneca-Impfung nicht unplausibel sei“.

Ad26.COV2.S (Janssen / Johnson & Johnson)

Bei dem von der belgischen Firma Janssen Pharmaceutica (einem Tochterunternehmen des amerikanischen Konzerns Johnson & Johnson) entwickelten Impfstoffkandidaten Ad26.COV2.S handelt es sich um einen Vektorimpfstoff auf Basis eines humanpathogenen Adenovirus vom Typ 26. Am 27. Februar 2021 erteilte die US-amerikanische Zulassungsbehörde FDA dem Impfstoff eine Notfallgebrauchszulassung, nachdem entsprechende klinische Studien ergeben hatten, dass der Impfstoff in einer einmaligen Injektion zu mehr als 85 % effektiv in der Verhinderung schwerer COVID19-Fälle und zu 66 % effektiv in der Verhinderung leichter COVID19-Fälle war. Am 11. März 2021 erteilte die EU-Kommission unter dem Namen COVID-19 Vaccine Janssen die bedingte Zulassung, nachdem die EMA das Nutzen-Risiko-Verhältnis positiv beurteilt hatte. Anders als die bisher in der EU verfügbaren Impfstoffe erfordert die Impfung mit COVID-19 Vaccine Janssen nur die Gabe einer einzelnen Dosis. Die Stiko empfiehlt jedoch aufgrund vieler Durchbruchinfektionen, den Impfschutz nach vier Wochen mit einem mRNA-Vakzin aufzufrischen.

Ad5-nCoV, Convidecia (CanSino Biologics)

Ad5-nCoV (Handelsname Convidecia) ist einer von mehreren durch den chinesischen Hersteller auf den Markt gebrachten Impfstoffen. Er benutzt einen Vektor auf der Basis des humanpathogenen Adenovirus vom Typ 5. Nach dem vorläufigen Ergebnis des russischen Pharmakonzerns Petrovax vom 14. Januar 2021 ist er zu 92,5 % effektiv.

Er erhielt am 19. Mai 2022 von der WHO eine Notfallzulassung (EUL). Zuvor wurde er bereits in China, Argentinien, Chile, Indonesien, Malaysia, Mexiko, Pakistan und Russland verimpft. Bis Ende 2021 wurden laut WHO 58 Millionen Dosen ausgeliefert.

Sputnik V (Gamaleja-Institut)

Am 1. August 2020 erhielt der kombinierte Vektorimpfstoff Gam-COVID-Vac als weltweit erster COVID-19-Impfstoff in Russland eine Notfallzulassung. Das Vakzin basiert auf zwei rekombinanten humanpathogenen Adenovirus-Typen, dem Adenovirus Typ 26 (rAd26) für die Prime-Impfung und dem Adenovirus Typ 5 (rAd5) für die Boost-Impfung. Beide Vektoren tragen das Gen für das Spike-Protein von SARS-CoV-2. Die Massenimpfungen starteten in Moskau am 5./6. Dezember 2020 auf freiwilliger Basis. Obwohl die Phase-III-Studien noch nicht abgeschlossen waren, hatten sich bis Mitte September 2020 Indien, Brasilien, Mexiko und Kasachstan für die Nutzung von Gam-COVID-Vac entschieden, während zugleich Zweifel an der Richtigkeit der Studienergebnisse laut wurden. Eine Auswertung basierend auf ca. 22.000 Personen wurde in The Lancet Anfang Februar 2021 veröffentlicht.

Das im März 2021 von der EMA gestartete Rolling-Review-Verfahren für Sputnik V wurde nach dem russischen Überfall auf die Ukraine ausgesetzt.

Auf Basis von Boten-RNA

Gegen das Coronavirus kommen neuartige Impfstoffe zum Einsatz. Dieses Video zeigt, wie die Impfung mit einem mRNA-Impfstoff funktioniert.

Monovalente mRNA-Impfstoffe, angepasst an den Wildtyp von SARS-CoV-2

Sowohl der von BioNTech und Pfizer entwickelte Impfstoff Tozinameran als auch das von Moderna entwickelte Vakzin mRNA-1273 geben den Körperzellen eine mRNA-Vorlage zur Herstellung des Spike-Proteins von SARS-CoV-2 (siehe RNA-Impfstoff). ARCoV nutzt dagegen die Rezeptor-Bindungs-Domäne.

BNT162b2, Tozinameran, Comirnaty (Biontech / Pfizer)
Ampulle mit fünf Impfdosen Tozinameran

In Kooperation mit der US-amerikanischen Firma Pfizer entwickelte die deutsche Firma Biontech im Jahr 2020 den RNA-Impfstoff BNT162b2, für den der internationale Freiname (INN) Tozinameran vorgeschlagen wurde. Von April bis November 2020 wurden im Rahmen einer Phase-3-Studie weltweit insgesamt knapp 43.500 Probanden diverser Gruppen ab 16 Jahren im Abstand von 21 Tagen zweimal mit 30 µg BNT162b2 oder Placebo geimpft. Die Abschlussanalyse wurde nach 170 bestätigten Covid-19-Fällen durchgeführt. Demnach traten ab dem 7. Tag nach der zweiten Injektion in der Impfstoffgruppe 8 Fälle von symptomatischem Covid-19 sowie 162 in der Placebogruppe auf. Das entspricht einer Wirksamkeit (relative Risikoreduktion) von insgesamt 95 Prozent (Konfidenzintervall: 90,3 bis 97,6 Prozent). Auch für Personen über 65 Jahre liege die Wirksamkeit bei über 94 % (Konfidenzintervall: 66,7 bis 99,9 Prozent). In der höchsten Altersgruppe (≥ 75 Jahre) ist eine Aussage über die Effektivität der Impfung mit hoher Unsicherheit behaftet (Konfidenzintervall: −13,1 bis 100). Von insgesamt 10 schweren COVID-19-Verläufen nach der ersten Dosis entfielen 9 auf die Placebogruppe. Die Wirksamkeit nach Gabe der ersten Dosis und vor Gabe der zweiten Dosis lag bei 52 Prozent, in der ersten Woche nach Gabe der 2. Dosis bei 90 Prozent. Die beobachtete Häufigkeit für symptomatisches Covid-19 in der geimpften Gruppe lag ab dem zwölften Tag nach der ersten Impfung unterhalb der Kontrollgruppe.

Der Impfstoff ist mittlerweile in mehr als 45 Ländern zumindest eingeschränkt zugelassen (Stand: 31. Dezember 2020). Erstmals zugelassen wurde er am 2. Dezember 2020 im Vereinigten Königreich. Am 9. Dezember folgte die Zulassung in Kanada; am 11. Dezember die Notfallzulassung in den USA. Die weltweit erste Zulassung in einem „ordentlichen Verfahren“ (Marktzulassung) folgte am 19. Dezember 2020 in der Schweiz. Am 21. Dezember wurde der Impfstoff in der EU zur Anwendung bei Personen ab 16 Jahren zugelassen. Seit 31. Dezember ist er der erste von der Weltgesundheitsorganisation gelistete Covid-19-Impfstoff.

mRNA-1273, Elasomeran, Spikevax (Moderna)

mRNA-1273 ist ein Corona-Impfstoff der US-amerikanischen Firma Moderna und des National Institute of Allergy and Infectious Diseases (NIAID).

Die klinischen Studien begannen im Mai 2020. Am 16. November 2020 vorgelegte Zwischenergebnisse zeigten eine Wirksamkeit von 94,5 Prozent. Eine weitere Zwischenauswertung, die Fälle bis 21. November berücksichtigte und zwischenzeitlich einem Peer-Review unterzogen wurde, zeigte eine Wirksamkeit von 94,1 Prozent. Alle 30 bis dahin beobachteten schweren Covid-19-Verläufe wurden in der Placebo-Gruppe beobachtet.

Am 18. Dezember 2020 wurde eine Notfallzulassung für die USA erteilt. Es folgten Kanada und Israel. Am 6. Januar 2021 wurde der Impfstoff in der Europäischen Union zugelassen. In der Schweiz wurde der Impfstoff mRNA-1273 am 12. Januar 2021 von der Swissmedic zugelassen.

Moderna plant, 2021 wenigstens 600 Millionen Dosen zu produzieren, und versucht nach eigenen Angaben, seine Produktionskapazität auf bis zu eine Milliarde Dosen auszuweiten. Im 1. Quartal 2021 sollen 100 bis 125 Millionen Dosen bereitgestellt werden, davon 85 bis 100 Millionen in den Vereinigten Staaten. Moderna arbeitet bei der Produktion mit Lonza zusammen, das in Visp im Kanton Wallis den Wirkstoff für sämtliche Absatzmärkte außerhalb der Vereinigten Staaten produziert und dessen Massenproduktion seit Anfang Januar 2021 hochläuft. Die Auslieferung der 160 Millionen Dosen für die EU ist zwischen dem ersten und dritten Quartal vertraglich vereinbart. Am 11. Januar 2021 kamen die ersten 60.000 Dosen in Deutschland an. In der Schweiz sollen die ersten 200.000 von 7,5 Mio. Impfdosen in der zweiten Januarwoche 2021 ausgeliefert werden.

Bivalente, an den Wildtyp und Omikron-Subvarianten von SARS-CoV-2 angepasste COVID-19-Impfstoffe

Die im September 2022 zugelassenen bivalenten COVID-19-Impfstoffe auf Basis von Boten-RNA sollen einen breiteren Schutz gegen verschiedene SARS-CoV-2-Mutationen bieten. Zu diesem Zweck wurden die Vakzine in eine „bivalente Formulierung“ überführt; Basis für das Impfstoffdesign waren die bereits in der EU zugelassenen COVID-19-Impfstoffe Comirnaty (Biontech/Pfizer) und Spikevax (Moderna). Eine Impfung mit den neu zugelassenen Impfstoffen ist möglich bei Personen ab 12 Jahren, welche bereits mindestens die Grundimmunisierung gegen COVID-19 erhalten haben und erfolgt frühestens 3 Monate nach Verabreichung der letzten Dosis eines COVID-19-Impfstoffs.

Bivalente, insbesondere an die Omikron-Subvariante BA.1 angepasste COVID-19-Impfstoffe

Am 1. September 2022 erteilte die Europäische Kommission zwei der an die Omikron-Subvariante BA.1 angepassten mRNA-Impfstoffe die Zulassung für die Auffrischungsimpfung, nachdem der Ausschuss für Humanarzneimittel (CHMP) der EMA eine entsprechende Empfehlung abgegeben hatte. Es handelt sich um die bivalenten Impfstoffe Comirnaty Original/Omicron BA.1 (Biontech/Pfizer) und Spikevax bivalent Original/Omicron BA.1 (Moderna).

Seit dem 15. August 2022 ist im Vereinigten Königreich (UK) der bivalente Impfstoff Spikevax bivalent Original/Omicron BA.1 für die COVID-19-Auffrischungsimpfung bedingt zugelassen. In einer verabreichten Impfstoffdosis zielt eine Hälfte (Elasomeran, 25 Mikrogramm) auf den ursprünglichen Virusstamm und die andere Hälfte (Imelasomeran,[A 1] 25 Mikrogramm) dieses Vakzins auf die Omikron-Subvariante BA.1. Es folgten Zulassungen in der Schweiz und in Australien.[A 1]

Bivalente, insbesondere an die Omikron-Subvarianten BA.4 und BA.5 angepasste COVID-19-Impfstoffe

Am 12. September 2022 wurde auf Empfehlung der EMA von der Europäischen Kommission mit Comirnaty Original/Omicron BA.4-5 auch ein an die Omikron-Varianten BA.4 und BA.5 angepasster Impfstoff (Tozinameran 15 µg/Famtozinameran 15 µg) für die Auffrischungsimpfung ab 12 Jahren zugelassen. Für diesen bivalenten Impfstoff hatte die amerikanische Arzneimittelbehörde FDA bereits am 31. August 2022 eine Notfallzulassung für die Auffrischungsimpfung gewährt. Der neueste adaptierte Covid-19-Impfstoff von BioNTech/Pfizer ist gegen den Wildtyp von SARS-CoV-2 und die aktuell kursierenden Omikron-Subvarianten BA.4 und BA.5 gerichtet und für Personen ab zwölf Jahre als Grundimmunisierung gegen COVID-19 oder Auffrischungsimpfung vorgesehen.

An die Omikron-Subvariante XBB.1.5 angepasste COVID-19-Impfstoffe

Auf Basis von DNA

ZyCoV-D (Zydus Cadila)

Im August 2021 wurde in Indien der weltweit erste DNA-Impfstoff für Menschen zugelassen, der als erster SARS-CoV-2-Impfstoff intrakutan nadelfrei injiziert wird. Die Wirksamkeit liegt bei 67 %. Die ersten Impfungen sollen im September 2021 in Indien verabreicht werden.

Impfstoffkandidaten

Am 13. März 2020 verzeichnete die WHO 41, am 4. April 2020 60, am 13. August 2020 167, am 11. November 2020 234, am 20. August 2021 296 und am 5. November 2021 323 Impfstoffe in der Entwicklung. Am 16. März 2020 wurde erstmals ein SARS-CoV-2-Impfstoff (namens mRNA-1273) an 45 Menschen getestet. 20 Impfstoffe waren im September 2021 in Anwendung. Zurzeit (November 2021) sind 22 in Anwendung (Stand 29. Oktober 2021).

Bei den Impfstoffkandidaten ist die Arzneimittelsicherheit und die Impfstoffwirksamkeit zu klären. Jeder der verschiedenen Ansätze zur Entwicklung eines SARS-CoV-2-Impfstoffs hat Vor- und Nachteile. Nicht alle Kandidaten erreichen die Marktreife. Allgemein betrug zwischen 2006 und 2015 in den USA die Erfolgsquote in der Impfstoffentwicklung – gemessen am Anteil der Phase-I-Kandidaten, die es durch alle Studienphasen hindurch bis zur Zulassung schafften – 16,2 Prozent.

Die Internationale Koalition der Arzneimittelbehörden (ICMRA) appellierte im November 2020 an Pharmaunternehmen und Forscher, Phase-III-Studien mit COVID-19-Impfstoffen auch über den primären Endpunkt hinaus fortzusetzen, um mehr Daten zu Sicherheit und Wirksamkeit zu generieren.

In klinischer Prüfung

Die klinische Prüfung wird mit Patienten oder gesunden Probanden durchgeführt und ist eine Voraussetzung für die behördliche Arzneimittelzulassung. In der EU prüft die EMA geeignete Impfstoffkandidaten im Rolling-Review.

Impfstoffklasse Name Typ Entwickler Fortschritt Studienteilnehmer Publikationen
RNA CVnCoV
Zorecimeran
Liposom-umhüllte mRNA Deutschland Curevac
Deutschland Bayer
Phase 2b/3
(Zulassungsverfahren EMA im Oktober 2021 erfolglos beendet.)
Phase 2: 691
Phase 2b/3: mehr als 35.000
Phase 1
doi:10.1101/2020.11.09.20228551
Lunar-COV19
ARCT-021
Liposom-umhüllte selbstreplizierende RNA Vereinigte StaatenVereinigte Staaten Arcturus Therapeutics
Singapur Duke-NUS
Phase 1/2 Phase 1/2: 92
COVAC1 Liposom-umhüllte selbstamplifizierende RNA, RNA codierend für VEEV-Replicase und Antigen Vereinigtes KonigreichVereinigtes Königreich Imperial College London Phase 1 Phase 1: 320
DNA INO-4800 Plasmid mit Elektroporation Vereinigte StaatenVereinigte Staaten Inovio Pharmaceuticals Phase 2/3 Phase 1: 120

Phase 2: 640

AG0301-COVID‑19 Plasmid JapanJapan Universität Osaka
JapanJapan AnGes
JapanJapan Takara Bio
Phase 2/3 Phase 1: 30

Phase 2/3: 500

bacTRL-Spike S-Glykoprotein-codierendes Plasmid in Bifidobacterium longum, oral appliziert Kanada Symvivo Corporation
Kanada University of British Columbia
Kanada Dalhousie University
Phase 1
GX-19 ? Korea Sud Genexine Phase 1 Phase 1: 40
Nichtreplizierender
viraler Vektor
GRAd-COV2 Modifizierter Gorilla-Adenovirus-Vektor (GRAd) mit S-Glykoprotein ItalienItalien INMI
ItalienItalien ReiThera
Phase 2/3 Phase 1: 90

Phase 2/3: mehrere tausend

LV-SMENP-DC Lentiviraler Vektor in dendritischen Zellen per adoptivem Zelltransfer China Volksrepublik Shenzhen Geno-Immune Medical Institute Phase 1
COVID‑19/aAPC Lentiviraler Vektor in antigenpräsentierenden Zellen per adoptivem Zelltransfer China Volksrepublik Shenzhen Geno-Immune Medical Institute Phase 1
Protein UB-612 ? Taiwan United Biomedical Asia
Vereinigte StaatenVereinigte Staaten Vaxxinity
Brasilien DASA
Phase 2/3 Phase 1: 60
Peptid CoVac-1 Multipeptidcocktail Deutschland Universitätsklinikum Tübingen Phase 1 Phase 1: 36
Replizierender
viraler Vektor
BriLife
IIBR-100
Transgenes Vesicular-Stomatitis-Virus mit S-Glykoprotein des SARS-CoV-2 Israel Israelisches Institut für biologische Forschung (IIBR) Phase 2 Phase 1: 80

Phase 2: 1000

In präklinischer Prüfung

In der präklinischen Prüfung wird ein neuer Wirkstoff in geeigneten Tierversuchen auf Unbedenklichkeit und Wirksamkeit getestet. Die WHO verfolgt die Impfstoffkandidaten mit dem jeweiligen Entwicklungsstand.

Impfstoffklasse Typ Entwickler Publikationen 
RNA Liposom-umhüllte VLP-codierende mRNA-Mischung China Volksrepublik Fudan-Universität
China Volksrepublik Jiaotong-Universität Shanghai
China Volksrepublik RNACure Biopharma
RNA Liposom-umhüllte mRNA der RBD China Volksrepublik Fudan-Universität
China Volksrepublik Jiaotong-Universität Shanghai
China Volksrepublik RNACure Biopharma
RNA Liposom-umhüllte mRNA JapanJapan Universität Tokio
JapanJapan Daiichi Sankyō
RNA Liposom-umhüllte mRNA RusslandRussland BIOCAD
RNA mRNA RusslandRussland FBRI SRC VB VECTOR, Rospotrebnadzor, Kolzowo
RNA mRNA China Volksrepublik China CDC
China Volksrepublik Tongji-Universität
China Volksrepublik Stermina
RNA mRNA, intranasal appliziert Belgien eTheRNA
RNA SpanienSpanien Centro Nacional Biotecnología
mRNA/DNA-basiert mRNA/DNA-basiert Vereinigte StaatenVereinigte Staaten Translate Bio
FrankreichFrankreich Sanofi
DNA DNA mit Elektroporation SchwedenSchweden Karolinska-Institut
SchwedenSchweden Cobra Biologics
(OPENCORONA Consortium)
DNA Lineare DNA per PCR ItalienItalien Takis
Vereinigte StaatenVereinigte Staaten Applied DNA Sciences
ItalienItalien Evvivax
DNA Plasmid, nadelfrei Vereinigte StaatenVereinigte Staaten Immunomic Therapeutics
Vereinigte StaatenVereinigte Staaten EpiVax
Vereinigte StaatenVereinigte Staaten PharmaJet
DNA Thailand BioNet Asia
DNA Kanada Universität Waterloo
Nichtreplizierender viraler Vektor Adenovirus-basiertes NasoVAX, nasal angewendet Vereinigte StaatenVereinigte Staaten Altimmune
Nichtreplizierender viraler Vektor Adenovirus (Ad5 S) (GREVAX-Plattform) Vereinigte StaatenVereinigte Staaten Greffex
Nichtreplizierender viraler Vektor Adenovirus (Ad5 S) Vereinigtes KonigreichVereinigtes Königreich Stabilitech Biopharma
Nichtreplizierender viraler Vektor Adenovirus (Ad5) mit Antigen und TLR3-Agonist, oral appliziert Vereinigte StaatenVereinigte Staaten Vaxart
Nichtreplizierender viraler Vektor MVA-codiertes virusartiges Partikel Vereinigte StaatenVereinigte Staaten GeoVax
Nichtreplizierender viraler Vektor MVA-S enkodiert Deutschland Deutsches Zentrum für Infektionsforschung
Nichtreplizierender viraler Vektor MVA SpanienSpanien Centro Nacional Biotecnología
Nichtreplizierender viraler Vektor Parainfluenzavirus 5 mit S-Glykoprotein Vereinigte StaatenVereinigte Staaten University of Georgia
Vereinigte StaatenVereinigte Staaten University of Iowa
Nichtreplizierender viraler Vektor Orf-Virus-Vektor-basierter, polyvalenter Impfstoff mit mehreren Antigenen Deutschland Prime Vector Technologies
Nichtreplizierender viraler Vektor in dendritischen Zellen per adoptivem Zelltransfer Kanada University of Manitoba
Replizierender viraler Vektor Masernvirus-Vektor Indien Zydus Cadila
Replizierender viraler Vektor Masernvirus-Vektor FrankreichFrankreich Institut Pasteur
OsterreichÖsterreich Themis Bioscience
Vereinigte StaatenVereinigte Staaten University of Pittsburgh
Replizierender viraler Vektor Masernvirus-Vektor RusslandRussland FBRI SRC VB VECTOR, Rospotrebnadzor, Kolzowo
Replizierender viraler Vektor Pferdepockenvirus-Vektor mit S-Glykoprotein Vereinigte StaatenVereinigte Staaten Tonix Pharmaceuticals
Vereinigte StaatenVereinigte Staaten Southern Research
Replizierender viraler Vektor modifiziertes Influenzavirus, nasal appliziert RusslandRussland FBRI SRC VB VECTOR, Rospotrebnadzor, Kolzowo
Replizierender viraler Vektor modifiziertes Influenzavirus mit RBD, nasal appliziert Hongkong Universität Hongkong
Replizierender viraler Vektor VSV-Vektor mit S-Glykoprotein Vereinigte StaatenVereinigte Staaten IAVI
NiederlandeNiederlande Batavia
Replizierender viraler Vektor VSV-Vektor mit S-Glykoprotein Kanada University of Western Ontario
Replizierender viraler Vektor VSV-Vektor RusslandRussland FBRI SRC VB VECTOR, Rospotrebnadzor, Kolzowo
Replizierender viraler Vektor Attenuierter Influenzavirus-Vektor RusslandRussland BiOCAD
IEM
Neuartiges Vektorvirus Modifiziertes Spike-Protein auf antigenpräsentierendem NDV Brasilien Instituto Butantan
Vereinigte StaatenVereinigte Staaten UT Austin
Vereinigte StaatenVereinigte Staaten ISMMS
Lebendimpfstoff
(Attenuiertes Virus)
mehrfach attenuiertes Virus Vereinigte StaatenVereinigte Staaten Codagenix
Indien Serum Institute of India
Lebendimpfstoff Masernvirusvektor mit S-Glykoprotein und Nukleokapsidprotein Deutschland Deutsches Zentrum für Infektionsforschung
Totimpfstoff
(Inaktiviertes Virus)
mit Adjuvans CpG-Oligonukleotid 1018 China Volksrepublik Sinovac
Vereinigte StaatenVereinigte Staaten Dynavax Technologies
Totimpfstoff
(Inaktiviertes Virus)
JapanJapan Universität Osaka
JapanJapan BIKEN
JapanJapan NIBIOHN
Totimpfstoff Totimpfstoff mit gentechnisch hergestellten Antigenen (in Tabak produziert) Vereinigte StaatenVereinigte Staaten Kentucky BioProcessing
Protein Kapsid-artiges Partikel Danemark AdaptVac
(PREVENT-nCoV consortium)
Protein Peptid Kanada Vaxil Bio
Protein Peptid Vereinigte StaatenVereinigte Staaten Flow Pharma Inc.
Protein Peptid auf MHC-Klasse-II-Komplex (Ii-Key-Peptid) Vereinigte StaatenVereinigte Staaten Generex
Vereinigte StaatenVereinigte Staaten EpiVax
Protein Peptide RusslandRussland FBRI SRC VB VECTOR, Rospotrebnadzor, Kolzowo
Protein Peptide in Liposomen Kanada IMV
Protein Peptid mit Adjuvans Kanada VIDO-InterVac
Kanada University of Saskatchewan
Protein Peptide von S-Glykoprotein und M-Protein Rumänien OncoGen
Protein S-Glykoprotein Vereinigte StaatenVereinigte Staaten WRAIR
Vereinigte StaatenVereinigte Staaten USAMRIID
Protein S-Glykoprotein mit Adjuvans JapanJapan National Institute of Infectious Diseases, Japan
Protein S-Glykoprotein mit Mikronadeln Vereinigte StaatenVereinigte Staaten University of Pittsburgh
Protein S-Glykoprotein Danemark AJ Vaccines
Protein S-Glykoprotein Vereinigte StaatenVereinigte Staaten Epivax
Vereinigte StaatenVereinigte Staaten University of Georgia
Protein S-Glykoprotein-Klammer AustralienAustralien University of Queensland
Vereinigtes KonigreichVereinigtes Königreich GlaxoSmithKline
Vereinigte StaatenVereinigte Staaten Dynavax Technologies
Protein Verkürztes S-Glykoprotein China Volksrepublik Innovax
China Volksrepublik Xiamen
Vereinigtes KonigreichVereinigtes Königreich GlaxoSmithKline
Protein rekombinantes S-Glykoprotein mit Adjuvans (Advax) AustralienAustralien Vaxine Pty
Protein basierend auf S-Glykoprotein Kanada University of Alberta
Protein gp-96-Fusionsprotein Vereinigte StaatenVereinigte Staaten Heat Biologics
Vereinigte StaatenVereinigte Staaten University of Miami
Protein Lichenase-Fusionsprotein aus transgenen Pflanzen Vereinigte StaatenVereinigte Staaten iBio
China Volksrepublik CC-Pharming
Protein S1- oder RBD-Protein Vereinigte StaatenVereinigte Staaten Baylor College of Medicine
Protein E. coli mit S-Glykoprotein und Nukleokapsidprotein, oral appliziert Israel MIGAL Galilee Research Institute
Protein Untereinheiten-Impfstoff RusslandRussland FBRI SRC VB VECTOR, Rospotrebnadzor, Kolzowo
Protein Virusartiges Partikel mit S-Glykoprotein und anderen Epitopen RusslandRussland Sankt Petersburg Forschungsinstitut für Impfstoffe und Seren
Protein Virusartige Partikel aus Drosophila-S2-Insektenzellkultur Danemark ExpreS2ion
Protein Virusartiges Partikel mit Adjuvans JapanJapan Universität Osaka
JapanJapan BIKEN
JapanJapan National Institute of Biomedical Innovation
Virusartiges Partikel Virusartiges Partikel mit RBD Schweiz Saiba
Virusartiges Partikel Virusartiges Partikel von SARS-CoV-2 aus transgenen Tabakpflanzen Kanada Medicago
Virusartiges Partikel ADDomerTM Vereinigtes KonigreichVereinigtes Königreich Imophoron Ltd.
Vereinigtes KonigreichVereinigtes Königreich University of Bristol
Virusartiges Partikel AustralienAustralien Doherty Institute
Virusartiges Partikel FrankreichFrankreich Osivax
Aviäres Coronavirus modifiziertes Infektiöses Bronchitis Virus (IBV) Israel MIGAL Galilee Research Institute
Unbekannt Unbekannt Kanada ImmunoPrecise Antibodies
Unbekannt Unbekannt Vereinigte StaatenVereinigte Staaten Tulane University
Unbekannt Unbekannt Kanada Universität Laval
Unbekannt Unbekannt Schweiz Alpha-O Peptides
Unbekannt Unbekannt Vereinigte StaatenVereinigte Staaten Sorrento Therapeutics

Nebenwirkungen

Das Risiko, durch eine Impfung gegen COVID-19 eine schwerwiegende Nebenwirkung zu erleiden, ist nach Angaben des Bundesgesundheitsministeriums um ein Vielfaches geringer als das Risiko, schwer an COVID-19 zu erkranken oder gar daran zu sterben. Bis zum 30. Juni 2022 wurden in Deutschland nach Angaben des Paul-Ehrlich-Instituts (PEI) 182,7 Millionen Impfdosen mit den bis dahin zugelassenen Impfstoffen verabreicht, davon 73,7 % mit Comirnaty (Freiname: Tozinameran, Biontech/Pfizer), 7,0 % mit Vaxzevria (AstraZeneca), 17,1 % mit Spikevax (Moderna), 2,1 % mit Jcovden (Janssen-Cilag International NV) und 0,1 % mit Nuvaxovid. Zu den häufigsten Nebenwirkungen gehörten vorübergehende Reaktionen wie Schmerzen an der Einstichstelle, Kopfschmerzen, Müdigkeit, Fieber sowie erkältungsähnliche Symptome. Dies sind übliche Impfreaktionen, die durch die Aktivierung des Immunsystems auftreten können. Laut Zulassungsstudien treten sie insbesondere nach der zweiten Impfdosis auf, vgl. die Auflistungen in den Artikeln zu den jeweiligen Impfstoffen (Tozinameran (Biontech), mRNA-1273 (Moderna), AZD1222 (AstraZeneca) und Ad26.COV2.S (Johnson & Johnson)).

Schwere Nebenwirkungen sind relativ selten. Das PEI berichtet in der zitierten Publikation über insgesamt 3023 gemeldete Verdachtsfälle mit tödlichem Ausgang bei Erwachsenen. Dass ein kausaler Zusammenhang des Todesfalls mit der Impfung besteht, bezeichnet das PEI in seinem Bericht vom 7. September 2022 allerdings nur in 120 Einzelfällen als „möglich oder wahrscheinlich“.

Generell wird bei Impfungen in Deutschland und in anderen Ländern überwacht, ob andere als aus den Zulassungsstudien bekannte oder schwere Nebenwirkungen auftreten. Dabei wertet die zuständige Behörde aus, ob die gemeldeten Verdachtsfälle auf eine auffällige Entwicklung hinweisen, ein statistisch normales Geschehen abbilden oder in keinem Zusammenhang mit den Impfungen stehen. In Deutschland sind Ärzte, anderes Fachpersonal und Impfstoffhersteller bei Verdacht auf eine „über das übliche Ausmaß einer Impfreaktion hinausgehende gesundheitliche Schädigung“ (§ 6 Abs. 1, Nr. 3. IfSG) verpflichtet, diese an das Gesundheitsamt zu melden. In Deutschland ist das Paul-Ehrlich-Institut (PEI) für Impfstoffe verantwortlich und überwacht ihre Qualität, Wirksamkeit und Sicherheit. Damit gelten die COVID-19-Impfstoffe bereits heute als die mit am besten untersuchten und überwachten Vakzine, die es bisher gab. Geimpfte können mögliche Nebenwirkungen über die SaveVac-App erstmals auch selbst eintragen und melden.

Effektivität der Impfstoffe

Während die Impfstoffwirksamkeit (englisch vaccine efficacy) unter Optimalbedingungen z. B. für die Zulassung von Impfstoffen ermittelt wird, steht die Impfstoffeffektivität (englisch vaccine effectiveness) für den Schutz durch den Impfstoff im Alltag, ermittelt über Beobachtungsstudien. Die Effektivität der Impfstoffe hängt also von den jeweils vorherrschenden Virusvarianten, vom Impfabstand (Zeitabstand zwischen der ersten und zweiten Impfung), Vorerkrankungen, Altersstruktur der Bevölkerung, zeitlichem Abstand seit dem Abschluss der Impfserie sowie weiteren Parametern wie z. B. Einhaltung der Temperaturgrenzen bei Lagerung und Transport und der Impftechnik ab.

Großbritannien verwendete sowohl für den Impfstoff von AstraZeneca als auch den von Biontech/Pfizer in der Regel einen Impfabstand von 8 bis 12 Wochen, während man in Deutschland einen Impfabstand von über 6 Wochen nur bei AstraZeneca verwendete. Beim Impfstoff von Biontech/Pfizer bzw. Moderna betrug der Impfabstand in den Impfzentren entsprechend der Empfehlung der STIKO für längere Zeit 6 Wochen, während Hausärzte den Impfstoff von Biontech/Pfizer dem Herstellervorschlag folgend auch im Abstand von 3 bis 4 Wochen impften. Die aktuelle Empfehlung der STIKO (Stand 1. Juli 2021) für den Impfabstand ist bei Biontech/Pfizer 3–6 Wochen und bei Moderna 4–6 Wochen.

Haushaltskontakt-Studien aus Großbritannien und den Niederlanden deuteten darauf hin, dass die Ansteckung Dritter durch die Impfung mit Tozinameran (Biontech/Pfizer), AZD1222 (AstraZeneca), Elasomeran (Moderna) oder Ad26.COV2.S (Janssen) Ende 2021 reduziert wurde.

In Israel folgte man bei Biontech/Pfizer weit überwiegend der Herstellerempfehlung von 3 Wochen. Es stellte sich heraus, dass bei Biontech/Pfizer die Immunität bei langem Impfabstand (8–12 Wochen) deutlich höher ist als bei kurzem (3–4 Wochen), so dass die Effektivität der Zweifachimpfung mit dem Impfstoff von Biontech/Pfizer also in Großbritannien entsprechend höher ist als in Israel. Verschlimmert wird dies in Israel dadurch, dass die Effektivität des Impfstoffs von Biontech/Pfizer nach 6 Monaten deutlich abnimmt und in Israel die Impfung bei der Mehrheit der Menschen bereits im Frühjahr 2021 stattfand. Die gesunkene Effektivität des Impfstoffs veranlasste die israelische Regierung am 29. August 2021, die Auffrischungsimpfung (Drittimpfung) mit Biontech/Pfizer für alle damit zweifach Geimpften zu öffnen und zu empfehlen; für noch nicht Geimpfte ist man in Israel auf den wirksameren Impfstoff von Moderna umgestiegen.

Effektivität einzelner Impfstoffe in den USA im Juni bis August 2021

Die Gesundheitsbehörde CDC veröffentlichte im September 2021 auf Basis der Daten von knapp 33.000 Patienten der Monate Juni bis August eine Schätzung der Impfeffektivität; in diesem Zeitraum herrschte in den USA die Delta-Variante vor. Die Impfeffektivität, über alle Altersgruppen hinweg betrachtet, war in Bezug auf die Vermeidung einer Hospitalisierung bei vollständiger Impfung mit:

  • BNT162b2 (Pfizer-BioNTech): 80 Prozent (KI:[A 2] 73 bis 85 Prozent)
  • mRNA-1273 (Moderna): 95 Prozent (KI: 92 bis 97 Prozent)
  • Ad26.COV2.S (Janssen): 60 Prozent (KI: 31 bis 77 Prozent)[A 3]

Der Impfschutz vor einer benötigten Krankenhauseinweisung fiel danach bei über 75-Jährigen signifikant – um etwa 10 Prozent – geringer aus als bei den 18- bis 74-Jährigen. Der Impfstoff von AstraZeneca wird in den USA nicht verwendet und ist daher hier nicht aufgeführt.

Effektivität der Impfstoffe gegen neuere Varianten

Mit zunehmenden Mutationen des Virus nimmt die Wirksamkeit eines auf dem Wuhan-Stamm basierenden Impfstoffs gegenüber Infektionen mit neuen Varianten ab. Ebenso nimmt die Wirksamkeit gegenüber Infektionen mit zunehmendem Zeitabstand zur Impfung ab, da die durch Impfung induzierten Antikörpertiter mit der Zeit abnehmen. Corona-Impfungen verhinderten bei Infektionen mit der Delta-Variante von SARS-CoV-2 asymptomatische und symptomatische COVID-19-Erkrankungen noch in etwa der Hälfte der Fälle; das Risiko einer Krankenhauseinweisung wurde bei über 60-Jährigen auf weniger als ein Fünftel reduziert. Das Risiko, schwer krank zu werden oder zu sterben, war im Juli 2021 laut US-Seuchenschutzbehörde CDC für ungeimpfte Personen mehr als zehnmal höher als für diejenigen, die geimpft wurden. Im August 2021 zeigten Daten aus Israel, dem Staat, der als einer der ersten die meisten Menschen impfen ließ, in der Altersgruppe ab 50 Jahren, dass das Risiko für Geimpfte, schwer zu erkranken, mindestens fünfmal niedriger war als für Ungeimpfte.

Zwei Meta-Analysen fanden, dass eine Auffrischungsimpfung („Booster“) den Wirkungsverlust gegenüber der Omikron-Variante teilweise kompensiert. Die Neutralisation der Omikron-Variante nach drei Impfungen (zweifache Impfung plus Auffrischungsimpfung) war vergleichbar mit der Neutralisation des Wuhan-Stammes nach zwei Impfungen. Etwa 80 % der T-Zell-Epitope des Spike-Glykoproteins waren nur unerheblich durch Mutationen verändert vom Wuhan-Stamm bis zur Omikron-Variante. Nach einer dritten Impfung mit dem auf dem Wuhan-Stamm basierenden Impfstoff beträgt der Schutz vor Hospitalisierung und Tod 97–99 % bei anschließenden Infektionen mit der Delta- oder der Omikron-Variante.

Auffrischungsimpfung und zusätzliche Impfstoffdosen für Grundimmunisierte

Eine weltweite Coronawelle, verursacht durch die hochgradig übertragbare Delta-Variante, hat Mitte September 2021 zu Diskussionen über die Notwendigkeit und den optimalen Zeitpunkt für die Verabreichung einer Dosis zur Auffrischungsimpfung oder einer zusätzlichen Impfstoffdosis – sogenannte Booster-Impfungen – an bereits Grundimmunisierte in der Allgemeinbevölkerung bzw. in den Risikogruppen geführt. Ein Autorenkollektiv wies im medizinischen Fachjournal The Lancet Mitte September 2021 darauf hin, dass jede diesbezügliche Entscheidung evidenzbasiert sein sollte und die Vorteile und Risiken für den Einzelnen und die Gesellschaft berücksichtigen müsse. Die meisten diesbezüglichen Beobachtungsstudien waren bis dato nur vorläufig und schwer genau zu interpretieren. Um sicherzustellen, dass Entscheidungen über Zusatz- oder Auffrischungsimpfungen gegen COVID-19 eher auf zuverlässigen wissenschaftlichen Erkenntnissen als auf politischen Erwägungen beruhen, sei es daher erforderlich, die in den Studien gewonnenen Daten einer sorgfältigen und öffentlichen Prüfung zu unterziehen. Auch wenn sich herausstellen sollte, dass Auffrischungsimpfungen das mittelfristige Risiko einer schweren Erkrankung bei bereits Geimpften verringern, könnte die Verimpfung der derzeit vorhandenen Vorräte an COVID-19-Impfstoffen nach Auffassung der Autoren mehr Leben retten, wenn diese nicht für Auffrischungsimpfungen verwendet, sondern an noch ungeimpfte Bevölkerungsgruppen verimpft werden.

Israel hat im ersten Quartal 2021 – einige Monate früher als andere Staaten – einen Großteil seiner Einwohner mit dem mRNA-Impfstoff Tozinameran (BioNTech/Pfizer) geimpft. Vom 25. April bis zum 21. Juni 2021 war die Zahl der registrierten Neuinfektionen pro Tag nur zweistellig; dann begann die vierte Welle der COVID-19-Pandemie in Israel. Die Zahl der registrierten Neuinfektionen mit SARS-CoV-2 stieg bis zum 3. September 2021 und ebbte dann schnell wieder ab; am 30. September 2021 wurden 3.635 Neuinfektionen registriert, am 30. Oktober nur noch 619. Israel hatte auf den Erfolg von Booster-Impfungen gesetzt und eine zusätzliche Impfstoffdosis an viele bereits gegen COVID-19 Grundimmunisierte, auch an Minderjährige, verabreicht. In Israel sind Booster-Impfungen für Erwachsene und Jugendliche ab einem Alter von zwölf Jahren vorgesehen, deren zweite Impfung mit Tozinameran (BioNTech/Pfizer) mindestens fünf Monate zurückliegt.

The Lancet veröffentlichte am 29. Oktober 2021 im Internet eine Studie, die rund 728.000 mit einer Booster-Dosis Geimpfte mit einer Gruppe mit ebenso vielen Probanden (Versuchsteilnehmer) verglich, die nur eine Grundimmunisierungsserie mit zwei Impfstoffdosen Tozinameran (BioNTech/Pfizer) erhalten hatten. Die Probanden in beiden Gruppen waren durchschnittlich 52 Jahre alt. Von den Probanden, an die zusätzlich zur Grundimmunisierungsserie eine Booster-Dosis Tozinameran verimpft worden war, mussten 29 Menschen wegen einer COVID-19-Erkrankung ins Krankenhaus, von den nur Grundimmunisierten waren es 231 – achtmal so viele.

Zur Aufrechterhaltung des Impfschutzes gegen COVID-19 erteilte die Europäische Kommission Anfang September 2022 zwei bivalenten, an Omikron-Subvariante BA.1 von SARS-CoV-2 angepassten mRNA-Impfstoffen die Zulassung für die Auffrischungsimpfung, nachdem der Ausschuss für Humanarzneimittel (CHMP) der EMA ein entsprechende Empfehlung abgegeben hatte. Es handelt sich um die bivalenten Impfstoffe Comirnaty Original/Omicron BA.1 (Biontech/Pfizer) und Spikevax bivalent Original/Omicron BA.1 (Moderna). Eine Impfung mit den neu zugelassenen Impfstoffen ist möglich bei Personen ab 12 Jahren, welche bereits mindestens die Grundimmunisierung gegen COVID-19 erhalten haben und erfolgt frühestens 3 Monate nach Verabreichung der letzten Dosis eines COVID-19-Impfstoffs.

Am 2. September 2022 sprach die US-Gesundheitsbehörde Zentren für Krankheitskontrolle und -prävention (CDC) eine offizielle Empfehlung für Auffrischungsimpfungen nach abgeschlossener Grundimmunisierung gegen COVID-19 mit einem der beiden bivalenten, an die Omikron-Subvariante BA.4 und BA.5 angepassten mRNA-Impfstoffe Moderna-COVID-19 Vaccine, Bivalent und Pfizer-BioNTech COVID-19 Vaccine, Bivalent aus. Die US-Arzneimittelbehörde (FDA) hatte für diese beiden COVID-19-Impfstoffe bereits am 31. August 2022 eine Notfallzulassung (Emergency use authorization, EUA) für die Verabreichung in den Vereinigten Staaten erteilt. Die bivalenten COVID-19-Impfstoffe – „bivalent“, da die Impfstoffe jeweils zwei Wirkstoffkomponenten enthalten – sollen sowohl Schutz vor dem ursprünglichen, erstmals in Wuhan nachgewiesenen Wildtyp von SARS-CoV-2 als auch vor den Omikron-Subvarianten BA.4 und BA.5 bieten. Am 12. September 2022 wurde auch von der Europäischen Kommission auf Empfehlung der Europäischen Arzneimittel-Agentur (EMA) mit Comirnaty Original/Omicron BA.4-5 ein an die Omikron-Varianten BA.4 und BA.5 angepasster COVID-19-Impfstoff für COVID-19-Auffrischungsimpfungen ab 12 Jahren zugelassen.

Siehe auch:

Beschaffung und Verteilung

Weltweit

Aufgrund einer Zusage der G20-Staats- und Regierungschefs vom 26. März 2020, die Pandemie gemeinsam zu bekämpfen, haben die Weltgesundheitsorganisation (WHO) und eine erste Gruppe von Gesundheitsakteuren, darunter die Gavi, die Impfallianz (früher „Globale Allianz für Impfstoffe und Immunisierung“, engl. Global Alliance for Vaccines and Immunisation) und die CEPI („Koalition für Innovationen in der Epidemievorbeugung“, engl. Coalition for Epidemic Preparedness Innovations), am 24. April 2020 eine weltweite Zusammenarbeit auf den Weg gebracht, um neue wichtige Instrumente gegen COVID-19, zu denen alle Länder der Welt gleichberechtigten Zugang haben sollen, schneller zu entwickeln und herzustellen. Die internationale Kampagne Access to COVID-19 Tools (ACT) Accelerator und die dazu gegründete COVAX-Initiative (Covid-19 Vaccines Global Access) hatten das Ziel eines gleichmäßigeren weltweiten Zugangs zu COVID-19-Impfstoffen.

Mehr als 40 Länder, Gremien der Vereinten Nationen und gemeinnützige Stiftungen verpflichteten sich auf einer Geberkonferenz am 4. Mai 2020, Mittel für die Erforschung und Entwicklung von Coronavirus-Lösungen in Höhe von insgesamt 7,4 Mrd. EUR bereitzustellen. Bis zum 28. Mai 2020 wurden insgesamt 15,9 Mrd. Euro mobilisiert.

Europäische Union

Im Rahmen der Coronavirus-Impfstoffstrategie koordiniert die Europäische Kommission die EU-weite Beschaffung von Impfstoff. Die Mitgliedstaaten verantworten hingegen ihre nationalen Impfstrategien, koordinieren diese aber auf EU-Ebene. Am 17. Juni 2020 legte die Kommission ihre Strategie zur Entwicklung und Bereitstellung eines wirksamen und sicheren Impfstoffs gegen das Coronavirus vor. Inhalt waren neben der Erforschung und Entwicklung neuartiger Impfstoffe auch die vorläufige Zulassung erster Impfstoffe durch die Europäische Arzneimittel-Agentur (EMA) sowie die Bekämpfung von Fehlinformationen in der Öffentlichkeit. Lieferverträge wurden mit den Herstellern BioNTech-Pfizer, Moderna, AstraZeneca, Sanofi-GSK, Janssen Pharmaceutica NV / Johnson and Johnson, CureVac, Valneva und Novavax geschlossen.

Nach den von der Kommission mit den Herstellern geschlossenen Verträgen übernehmen die Mitgliedstaaten einen Teil des finanziellen Risikos, das üblicherweise die Impfstoffhersteller nach den Grundsätzen der Produkthaftung tragen. Bürger, die durch einen der nach Maßgabe der abgeschlossenen Verträge gekauften COVID-19-Impfstoffe einen Impfschaden erleiden, können zwar Schadenersatzansprüche gegen den Hersteller des Impfstoffs geltend machen. Nach einer erfolgreichen Klage muss jedoch der Mitgliedstaat den Geschädigten entschädigen und die Prozesskosten des Impfstoffherstellers tragen.

Seit Oktober 2022 ermittelt die Europäische Staatsanwaltschaft auf Initiative des Europäischen Paraments vor allem wegen eines Vertrags mit Biontech/Pfizer vom Frühjahr 2021 über ein Volumen von mutmaßlich 35 Mrd. Euro.

Mit dem Abklingen der Corona-Pandemie herrscht inzwischen weltweit ein Überangebot an Covid-19-Impfstoffen.

Freigabe von Patenten

Kundgebung für die Freigabe der Patente am 10. März 2021 vor dem BMWI in Berlin

Um dem anfänglichen Mangel an Impfstoffen zu begegnen, musste zu Beginn der Verimpfung eine Priorisierung der COVID-19-Impfmaßnahmen stattfinden. Am 10. März 2021 blockierten EU-Länder, die Schweiz, die USA, Großbritannien und weitere WTO-Mitglieder einen Vorstoß von über 100 Entwicklungsländern, mit dem zeitweise auf Patentrechte verzichtet werden sollte, um die globale Produktion von COVID-Impfstoffen anzukurbeln.

Die WTO-Generaldirektorin Ngozi Okonjo-Iweala rief im März 2021 zur Lizenzherstellung von Impfstoffen auf: „Wenn wir nicht weltweit solidarisch handeln, dann werden sich die Virusmutationen vervielfachen und uns alle heimsuchen.“ Mehr als 130 Staaten hätten keinen Impfstoff. Am 5. Mai 2021 hat sich die US-Regierung der Initiative zur Aussetzung von Patenten für Corona-Impfstoffe angeschlossen. Auch Kanada, Australien und Japan erklärten ihre Unterstützung für eine Diskussion über die temporäre Aussetzung geistiger Eigentumsrechte. Am 1. Juni 2021 präsentierten IWF, WHO, Weltbank und WTO einen gemeinsamen Plan für einen gerechteren Zugang zu Impfungen und forderten die internationale Gemeinschaft auf, eine verstärkte und koordinierte weltweite Impfstrategie zu unterstützen und umzusetzen und mit neuen finanziellen Mitteln zu fördern. Die Investition sei „möglicherweise die beste Verwendung öffentlicher Gelder zu unseren Lebzeiten“. Auch der französische Präsident Macron hat im Juni 2021 seine Unterstützung für eine Aussetzung von Impfstoff-Patenten ausgedrückt.

Bestellte Impfdosen und Preise

Impfstoffentwickler bestellte Dosen (Mio.)
EU
CH
GB
US
CA
NZ
BR
MX
PE
CL
IN
JP
TW
AU
ID
MY
KR
AR
PH
Welt
(mind.)
AstraZeneca / Oxford 400 5,3 100 500 22 7,6 270,4 79,4 14,0 4,0 750 120 10,0 53,8 50,0 12,8 20 23,6 17 3.009
Biontech / Pfizer 2400 6,0 100 500 76 10,0 350,0 34,4 67,5 10,0 144 40,0 50,0 12,8 26 20,0 40 3.887
Moderna 460 20,5 17 500 44 13,0 39,0 20,0 50 5,1 25,0 40 20,0 20 1.274
Janssen / Johnson & Johnson 400 20 200 38 5,0 38,0 22,0 5,0 4,0 6 6 1.009
Novavax 200 6,0 60 110 76 10,7 10,0 200 51,0 50,0 40 30 1.404
Curevac 405 5,0 50 35,0 495
Sanofi / GSK 300 60 100 72 732
Valneva 60 100 160
HIPRA 250 250
Medicago 76 76
Gamaleya 24,0 40,0 156 6,4 20,0 10 765
Sinovac Biotech 100,0 20,0 7,0 60,0 125,5 14 36 449
Sinopharm 12,0 24,5 30,0 230
CanSino Biologics 60,0 35,0 1,8 3,5 5,4 106
Bharat Biotech 650 8 658
Biological E 300 300
Zydus Cadila 50 50
Gennova Biopharmaceuticals 60 60
Medigen 5,0 5
United Biomedical / Vaxxinity 5,0 5
verschiedene Hersteller über COVAX 4,8 25,5 54,0 20 > 13
Summe der bestellten Dosen 4.470 37,8 457 1.910 404 33,3 831,4 275,8 178,0 79,8 2.166 314 29,9 195,0 329,5 49,5 152 119,0 > 180 14.429
bestellten Dosen pro Einwohner 10,0 4,4 6,9 5,8 11,0 6,9 4,0 2,1 5,5 4,2 1,6 2,5 1,3 7,6 1,2 1,5 2,9 2,6 > 1,6 1,9

: in der EU zugelassen / : Entwicklung eingestellt

Am 8. Januar 2021 genehmigte die EMA die Entnahme von sechs statt bislang fünf Dosen Vakzin aus einer Biontech/Pfizer-Ampulle. Da der Vertragsabschluss der EU über Dosen und nicht Ampullen erfolgte, erlöste Biontech/Pfizer seitdem für eine Ampulle 20 % mehr. Auch konnte Biontech/Pfizer den Vertrag nunmehr mit einem Sechstel weniger Ampullen erfüllen.

Preise je Dosis, nach Impfstoffanbietern

Impfstoffentwickler Preis je Dosis (€)
EU
(unbestätigt)
AstraZeneca/Oxford 01,78
Biontech/Pfizer 12,00
Moderna 14,69
Janssen / Johnson & Johnson 06,94
Sanofi/GSK 07,56

Logistik

Überblick

Ein Mitarbeiter eines Krankenhauses in den USA erhält eine Impfung

Ein logistischer Engpass bei der Impfstoffproduktion war zunächst der weltweite Mangel an ausreichenden Mengen von Ampullen, in die der Impfstoff eingefüllt wird. In vier Werken der Schott AG in Deutschland, Indien und Brasilien wird das Ausgangsmaterial Borosilikatglas Typ 1 für die Fläschchen geschmolzen, ein sehr reines Glas, das speziell gehärtet und beschichtet wird, damit es zu keinerlei chemischer Reaktion mit den Impfstoffen kommt. Es zeichnet sich auch durch seine Unempfindlichkeit gegen plötzliche Temperaturschwankungen aus, eine Folge des geringen Wärmeausdehnungskoeffizienten von etwa 3,3 × 10−6 K−1. Dieses Glas wird zu Rohren gezogen, aus denen in vierzehn anderen Schott-Werken schließlich Fläschchen werden. Zehn Milliliter ist das Standardmaß für Sars-CoV-2-Impfstoff und fasst zehn Impfstoffdosen. Die aseptische Abfüllung und Verpackung („Fill & Finish“) des Impfstoffs übernimmt das Schweizer Unternehmen Siegfried in einer Produktionsanlage an seinem Standort in Hameln und stellt dort spezielle Lagerkapazitäten zur Verfügung.

Die für den Transport notwendige Logistik war dabei eine große Herausforderung. Man rechnete im September 2020 mit zehn Milliarden Impfdosen, die über die ganze Welt verteilt werden müssten, wofür rund 100.000 Paletten transportiert werden müssten und beispielsweise etwa 15.000 Flüge nötig wären. Besondere Herausforderungen bot die Lieferung vor allem in Gebiete mit warmem Klima, in denen die Logistik nur eingeschränkt auf die Einhaltung von Kühlketten ausgerichtet ist. Teile Afrikas, Südamerikas und Asiens seien schwer zu erreichen. Die nötige Temperatur muss über Sensoren eingehalten und lückenlos dokumentiert werden.

Kühlung bei Lagerung und Transport

Die verschiedenen Impfstoffe müssen unter jeweils anderen Temperaturen gelagert werden, um nicht zerstört zu werden. Es werden deshalb Kühlgeräte benötigt, die individuell eingestellt werden können. Hier ist die Logistik gefordert, um impfstoffabhängig die richtige Temperatur einzustellen und zu überwachen.

Im Vergleich zu den Proteinen oder Proteinfragmenten, aus denen herkömmliche Impfstoffe häufig bestehen, spaltet sich der Biontech-Pfizer-Impfstoff BNT162b2 mit Handelsnamen Tozinameran leicht bei Raumtemperatur. Er muss daher bei einer Temperatur zwischen −60 °C und −90 °C in Ultratiefkühlschränken gelagert werden und in Containern mit Ultratiefkühlschränken für den Luft-, Schiffs-, Bahn- und LKW-Transport transportiert werden. Inzwischen haben Studien ergeben, dass der Impfstoff innerhalb der maximalen Lagerdauer von neun Monaten auch bei bis zu −15 °C für zwei Wochen stabil bleibt. Laut Produktinformation des Herstellers sei BNT162b2 Konzentrat bis zu einem Monat auch bei 2 °C bis 8 °C haltbar, was die Anwendung am Zielort erleichtern würde, weil normale Kühlschränke zur kurzzeitigen Lagerung ausreichen würden. Der Impfstoff muss zur Verabreichung langsam auf Raumtemperatur angewärmt werden, wofür ein Zeitfenster von maximal fünf Tagen besteht. Am 18. Oktober 2021 erteilte die EMA der Ready-to-use-Fertiglösung die Freigabe. Vorteilhaft ist neben der einfacheren Handhabung, eine einfachere Lagerung und Logistik. Die Fertiglösung kann laut Hersteller bis zu 10 Wochen bei 2 °C bis 8 °C gelagert bzw. transportiert werden. Seit Anfang 2022 wird nun neben der bisherigen konzentrierten Version auch die Ready-to-use-Formulierung ausgeliefert.

Der von Moderna entwickelte Impfstoff mRNA-1273 kann bei −20 °C gelagert werden; diese Temperatur ist Standard für die meisten in Krankenhäusern und Apotheken verwendeten Gefrierschränke. Auch in Ländern und Regionen, in denen es an ultrakalten Gefriergeräten mangelt, wären Verteilung und Lagerung eines Impfstoffes wie des von Moderna entwickelten deshalb einfacher möglich.

Als Ursache für die unterschiedlichen benötigten Temperaturen bei der Lagerung von mRNA-1273 und BNT162b2 könnten u. a. unterschiedlich empfindliche Lipidhüllen oder die Unterschiede im mRNA-Code eine Rolle spielen; allerdings verwenden beide Impfstoffe mit N1-Methylpseudouridin denselben Ersatz-Baustein für Uridin.

Impfstoffverteilung

Massenimpfungen ohne Termin in der Messehalle Graz (24. August 2021)
Angebote wie die Impftram (hier: München) sollen den Zugang zur Impfung vereinfachen

In Deutschland sind die Gesundheitsministerien der 16 Bundesländer für die Organisation der Verteilung zuständig. Diese beauftragten Kühne + Nagel, Dachser, DHL, das Rote Kreuz sowie weitere Logistik-Unternehmen mit der Zustellung.

International übernahm DHL gemeinsam mit Kühne + Nagel, United Parcel Service (UPS) sowie Federal Express (Fedex) die Hauptlast der Vakzinverteilung. Um die Herausforderung in Gesundheitskrisen zu bewältigen, müssten Regierungen Strategien und Strukturen einführen. DHL schlägt in Kooperation mit McKinsey dazu fünf Säulen vor:

  • Notfallplan: Vorkehrungen für den Notfall entlang der gesamten Lieferkette, wie Erfassung von Echtzeit-Daten oder Einrichtung von Entscheidungs-Einheiten.
  • Kooperationsnetzwerk: Partnerschaften zwischen dem öffentlichen und privaten Sektor.
  • Physische Infrastruktur: Ausreichend Kapazitäten an Lager- und Transportmöglichkeiten zur Sicherstellung des Bestands an kritischen Vorräten.
  • Transparenz der Lieferkette: Stärkung IT-gestützter Lieferkettentransparenz mit Auswertung von Echtzeit-Daten zur Bewältigung von Nachfragespitzen.
  • Organisation und Ressourcen: Einrichtung eines Krisenstabs mit klarem Mandat, um im Ernstfall schnell handeln zu können.

Laut dieser Studie verfügen nur 25 Staaten über „fortschrittliche Logistiksysteme“; daher sei für Logistikunternehmen eine Zertifizierung für den Transport und die Lagerung von Life-Science-Produkten gefordert, um eine reibungslose Zollabfertigung zu gewährleisten. Allein die Öffnung der Ultratiefkühlschränke zur Überprüfung durch den Zoll könne zur Inaktivierung des Impfstoffes führen. Bisherige Erfahrungswerte bei biologischen Transporten, die „nur“ bei Temperaturen zwischen −20 °C und −30 °C transportiert werden mussten, ergaben einen „Schwund“ auf Grund von Transport- und Temperaturschäden von 25 % bis 50 % der transportierten Produkte.

Betrugswarnung und Bewachung

Medikamente sind der weltweit größte Betrugsmarkt im Umfang von rund 200 Milliarden US-Dollar pro Jahr, wodurch die weit verbreitete Nachfrage nach einem COVID-19-Impfstoff in der gesamten Lieferkette anfällig für Fälschungen, Diebstahl, Betrug und Cyberangriffe ist. Diesbezüglich gab das Büro der Vereinten Nationen für Drogen- und Verbrechensbekämpfung einen Report heraus. Am 2. Dezember 2020 erging eine weltweite Warnung der Interpol vor Kriminalität im Zusammenhang mit Corona-Impfstoffen. Kriminelle Organisationen planten Lieferketten zu unterwandern oder zu stören. Tatsächlich haben EU-Staaten, nach Angaben des Europäischen Amtes für Betrugsbekämpfung, während der Pandemie (Stand Februar 2021) Angebote dubioser Händler über 900 Millionen Impfdosen erhalten. Ebenso besteht die Gefahr des Diebstahls, der Fälschung und des illegalen Bewerbens von Impfstoffen.

Der russische Sicherheitssoftware-Hersteller Kaspersky und die südkoreanische Nachrichtenagentur Yonhap berichteten jeweils unabhängig voneinander von Malware-Hackerangriffen des nordkoreanischen Cybergeheimdienstes, dem Büro 121, auf mindestens einen SARS-CoV-2-Impfstoff-Hersteller, ein Gesundheitsministerium und die Europäische Arzneimittel-Agentur.

Entsorgung

COVID-19-Impfstoffabfälle erfordern grundsätzlich keinen besonderen Umgang bei der Entsorgung im Vergleich zu anderen nicht gefährlichen medizinischen Abfällen (Stand: März 2021). Das deutsche Umweltbundesamt stuft gebrauchte Impfstoff-Durchstechflaschen als nicht gefährliche Abfälle unter der Abfallschlüsselnummer 180104 ein. Gemäß Bund/Länder-Arbeitsgemeinschaft Abfall (LAGA) ist die Entsorgung gemeinsam mit gemischten Siedlungsabfällen zulässig. Dabei ist zum Beispiel durch Zugabe von saugfähigen Materialien sicherzustellen, dass bei der Sammlung und beim Transport keine Flüssigkeitsmengen austreten.

Die Entsorgung nicht verwendeter Impfstoffmengen in größeren Chargen ist wie Produktionsabfall zu behandeln, unter Beachtung der Verpackungsvorgaben einer Entsorgungsanlage und zur Vermeidung einer missbräuchlichen Weiterverwendung als AS 180109 („Arzneimittel mit Ausnahme derjenigen, die unter 180108* fallen“) dokumentiert einer geeigneten thermischen Behandlung zuzuführen.

Gebrauchte Spritzen und Kanülen sind so zu entsorgen, dass Maßnahmen des Arbeitsschutzes eingehalten werden, um möglichen Verletzungen durch Schnitte oder Stiche vorzubeugen. Die Sammlung hat in bruch- und durchstichfesten sowie fest verschlossenen Einwegbehältern zu erfolgen. Anschließend ist eine gemeinsame Entsorgung mit Abfällen des Restabfalls ohne weitere Umfüllung oder Sortierung in einer Abfallverbrennungsanlage möglich.

Priorisierung

Nachdem der Impfstoff nicht sofort weltweit in ausreichender Menge vorhanden war, erforderten die anfängliche Knappheit von COVID-19-Impfstoffen und die begrenzten Impfkapazitäten eine Priorisierung der COVID-19-Impfmaßnahmen darüber, wer zuerst geimpft werden sollte. In Deutschland wurde ein gemeinsames Positionspapier zur Priorisierung durch die Ständige Impfkommission (STIKO) beim Robert Koch-Institut, den Deutschen Ethikrat und die Nationale Akademie der Wissenschaften Leopoldina entwickelt.

Weitere Immunisierungsstrategien

Passive Immunisierung

Passiv-Impfstoffe bestehen aus Antikörpern, welche in der Regel das Virus blockieren und so ein Eindringen in die Zelle verhindern. Im Gegensatz zu Aktivimpfstoffen können sie direkt gegen COVID-19 wirken und deshalb auch bereits mit SARS-CoV-2 Infizierten helfen. Antikörper haben bisher die beste Wirkung bei der Verhinderung von COVID-19 gezeigt, so konnte die Passivimmunisierung mit neutralisierenden Antikörpern bei Risikogruppen die Hospitalisierung um 72 % verringern. Auch der mit SARS-CoV-2 infizierte amerikanische Präsident Donald Trump wurde mit neutralisierenden Antikörpern behandelt. Allerdings ist die passive Immunisierung aufgrund der notwendigen und vergleichsweise großen Mengen an Antikörpern, die meist per Hybridom-Technik erzeugt werden, kostenintensiv und die Wirkungsdauer auf wenige Wochen nach Infusion der Antikörper beschränkt.

Zahlreiche solcher neutralisierenden Antikörper gegen SARS-CoV-2 konnten bereits isoliert werden und mehr als 45 sind in der Entwicklung (Stand 1. Oktober 2020), davon 10 bereits in der klinischen Erprobung (Phasen I bis III). Eine Übertragung der Antikörper von COVID-19-Genesenen (in Form einer passiven Immunisierung durch Transfusion von Rekonvaleszentenseren, die polyklonale Antikörper gegen SARS-CoV-2 enthalten) kann einen kurzfristigen Schutz vor einer Infektion und eine Therapie bei Erkrankung bieten. Wesentlich mehr Entwicklungen nutzen dagegen menschliche oder humanisierte monoklonale Antikörper, beispielsweise von AbCellera Biologics (aus Kanada) mit Eli Lilly (aus den USA), von Harbour Biomed (aus China) mit Mount Sinai Health System (aus den USA), von ImmunoPrecise Antibodies (aus Kanada) und von Vir Biotechnology (aus den USA) mit WuXi (aus China) und Biogen (aus den USA).

Ein erster Zulassungsantrag wurde im Oktober 2020 in den USA für das Antikörperpräparat Bamlanivimab (LY-CoV555) gestellt, im November 2020 erfolgte die Notfallzulassung (emergency use authosization, EUA) für die Behandlung eines leichten bis mittelschweren Erkrankungsverlaufs, wenn aufgrund von Vorerkrankungen oder des Alters ein hohes Risiko für einen schweren Verlauf vorliegt. Ebenfalls im November 2020 erteilte die FDA Notfallzulassungen für Baricitinib (Olumiant, Eli Lilly) und die Kombination Casirivimab und Imdevimab (REGN-COV2) von Regeneron Pharmaceuticals, weiterhin im Februar 2021 für die Antikörperkombination Bamlanivimab und Etesevimab. Auch die europäische Arzneimittelagentur prüft seit Februar 2021 diese Antikörperpräparate. In Deutschland entwickelt die Corat Therapeutics menschliche monoklonale Antikörper, welche sowohl Risikogruppen schützen als auch an COVID-19 Erkrankte heilen sollen.

Impfung mit VPM1002

Der von dem Tuberkulose-Impfstoff Bacillus Calmette-Guérin (BCG) abgeleitete Impfstoff VPM1002 soll wie BCG die unspezifische oder die angeborene Immunabwehr stärken und damit den Verlauf von COVID-19-Erkrankungen mildern und schwere COVID-19-Verläufe verhindern. VPM1002 ist kein SARS-CoV-2-Impfstoff, sondern ein Impfstoff, der spezifisch gegen Tuberkulose-Bakterien wirkt und unspezifisch das Immunsystem stärkt.

Mix-und-Match

Die kombinierte Verwendung verschiedener Impfstoffe kann durch eine limitierte Verfügbarkeit eines Impfstoffs oder das Auftreten spezifischer Nebenwirkungen notwendig werden. Bisherige Daten sprechen für eine gute Wirksamkeit spezifischer Kombinationen, wie z. B. Vaxzevria kombiniert mit mRNA-Impfstoffen.

Personalisierte Impfstrategien

Aufgrund individuell unterschiedlich starker Immunantworten verschiedener Bevölkerungsteile, z. B. einer reduzierten Immunantwort bei Älteren oder Immunsupprimierten, die die Wirksamkeit der Impfung beeinflussen können, und der eingeschränkten Verfügbarkeit von Impfstoff während einer Pandemie-Welle werden Impfstrategien und Computermodelle erforscht, welche den individuellen oder gesellschaftlichen Nutzen der Impfung durch unterschiedliche Anzahl an Booster-Impfungen oder durch Minderung der Dosis des Impfstoffs abwägen, um mehr Menschen frühzeitig impfen zu können.

COVID-Impfung für Tiere

Zoetis, ein Hersteller von Tierarzneimitteln und Impfstoffen für Nutz- und Haustiere, hat einen Impfstoff eigens für Tiere entwickelt. Einige zoologische Gärten in den USA impfen ihre Tiere gegen COVID-19.

Impfstatistik

Die Weltgesundheitsorganisation WHO hatte zum Ziel vorgegeben, dass in allen Ländern (mindestens) 40 Prozent der Bevölkerung bis Ende 2021 vollständig grundimmunisiert ist und 70 Prozent bis Mitte 2022, doch viele Länder erreichten das 40%-Ziel bis Ende 2021 noch nicht. In Ländern mit niedrigen Durchschnittseinkommen (engl. „low-income country“) hatten bis Anfang Januar 2022 durchschnittlich 8,9 Prozent der Menschen die erste Impfdosis bekommen.

Staat Verabreichte Impfdosen Mindestens einmal geimpft Vollständig geimpft Stand Ref.
absolut pro 100 Einw. absolut Anteil absolut Anteil
Agypten Ägypten 100.303.642 98,0 53.496.777 52,3 % 39.910.404 39,0 % 30. Oktober 2022
Albanien Albanien 2.991.576 105,4 1.339.100 47,2 % 1.265.900 44,6 % 16. Oktober 2022
Andorra Andorra 154.077 199,4 57.892 74,9 % 53.474 69,2 % 21. August 2022
Argentinien Argentinien 115.074.170 251,2 41.157.342 89,8 % 38.039.245 83,0 % 16. März 2023
Athiopien Äthiopien 52.509.414 45,7 43.111.242 37,5 % 36.707.357 31,9 % 31. Juli 2022
Australien Australien 64.248.569 249,6 22.236.640 86,4 % 21.655.294 84,1 % 23. November 2022
Bahrain Bahrain 3.466.610 203,7 1.240.085 72,9 % 1.225.182 72,0 % 26. August 2022
Bangladesch Bangladesch 354.990.838 213,5 151.141.568 90,9 % 136.721.925 82,2 % 14. Februar 2023
Belarus Belarus 14.916.985 158,7 6.579.060 70,0 % 6.506.015 69,2 % 21. August 2022
Belgien Belgien 28.259.334 244,5 9.248.836 80,0 % 9.152.369 79,2 % 16. Oktober 2022
Bhutan Bhutan 2.007.661 260,2 698.608 90,5 % 677.415 87,8 % 9. Oktober 2022
Bosnien und Herzegowina Bosnien und Herzegowina 1.553.874 47,4 882.641 26,9 % 720.631 22,0 % 25. Januar 2022
Brasilien Brasilien 502.262.440 234,7 186.615.476 87,2 % 169.594.017 79,3 % 10. Februar 2023
Bulgarien Bulgarien 4.588.661 66,5 2.104.168 30,5 % 2.075.683 30,1 % 13. November 2022
Chile Chile 64.599.073 336,2 18.088.517 94,2 % 17.700.117 92,1 % 10. Februar 2023
China Volksrepublik Volksrepublik China 3.465.113.661 245,3 1.307.511.577 92,6 % 1.277.356.924 90,4 % 29. November 2022
Costa Rica Costa Rica 12.169.521 238,9 4.500.155 88,3 % 4.219.797 82,8 % 28. Oktober 2022
Danemark Dänemark 13.261.996 227,4 4.820.090 82,7 % 4.738.221 81,3 % 26. August 2022
Deutschland Deutschland 192.149.768 231,1 64.873.567 78,0 % 63.560.067 76,5 % 10. März 2023
Dominikanische Republik Dominikanische Republik 16.063.153 148,1 7.286.204 67,2 % 6.052.407 55,8 % 14. Oktober 2022
Estland Estland 2.075.264 155,9 867.731 65,2 % 847.190 63,6 % 30. Oktober 2022
Finnland Finnland 12.591.177 227,7 4.520.541 81,7 % 4.340.217 78,5 % 23. August 2022
Frankreich Frankreich 153.372.024 227,2 54.628.707 80,9 % 53.132.506 78,7 % 29. Dezember 2022
GibraltarGibraltar Gibraltar 122.732 364,3 42.145 125,1 % 41.337 122,7 % 12. Mai 2022
Griechenland Griechenland 21.321.937 199,0 7.925.594 74,0 % 7.635.349 71,3 % 26. August 2022
Indien Indien 2.201.070.517 158,0 1.025.616.685 73,6 % 954.357.898 68,5 % 1. Januar 2023
Indonesien Indonesien 458.965.619 166,1 212.032.380 76,7 % 175.385.577 63,5 % 10. März 2023
Iran Iran 154.491.250 183,9 65.064.570 77,5 % 58.465.011 69,6 % 30. Oktober 2022
Irland Irland 11.044.654 221,1 4.096.470 82,0 % 4.051.231 81,1 % 19. September 2022
Island Island 837.283 228,5 311.056 84,9 % 292 149 79,7 % 22. August 2022
Israel Israel 18.219.817 197,7 6.716.655 72,9 % 6.151.559 66,7 % 26. August 2022
Italien Italien 143.377.427 242,7 50.865.566 86,1 % 47.975.112 81,2 % 31. Dezember 2022
Japan Japan 381.096.147 303,2 104.651.659 83,7 % 103.291.148 82,2 % 15. Februar 2023
Bailiwick of Jersey Jersey 238.254 232,0 83.901 81,7 % 81.248 79,1 % 21. August 2022
Kambodscha Kambodscha 45.101.653 266,1 15.235.245 89,9 % 14.600.964 86,2 % 16. Dezember 2022
Kanada Kanada 88.933.879 234,0 33.133.232 87,2 % 31.562.777 83,0 % 9. September 2022
Katar Katar 7.607.945 259,6 2.851.847 97,3 % 2.851.847 97,3 % 12. März 2023
Kenia Kenia 22.627.957 41,2 14.036.884 25,5 % 10.641.225 19,4 % 13. November 2022
Kolumbien Kolumbien 89.209.704 175,3 42.828.694 84,2 % 36.763.427 72,3 % 28. Oktober 2022
Kongo Demokratische Republik Demokratische Republik Kongo 17.435.502 18,9 9.045.823 9,8 % 6.756.571 7,3 % 11. Dezember 2022
Kosovo Kosovo 1.835.458 103,4 906.013 51,0 % 824.478 46,4 % 25. August 2022
Kroatien Kroatien 5.269.284 130,2 2.317.178 57,3 % 2.247.290 55,5 % 24. August 2022
Kuba Kuba 43.699.165 386,1 10.729.399 94,8 % 10.008.974 88,4 % 8. März 2023
Lettland Lettland 2.975.895 158,0 1.344.069 71,4 % 1.304.447 69,3 % 5. Februar 2023
Liechtenstein Liechtenstein 74.304 194,2 26.766 70,0 % 26.445 69,1 % 6. März 2023
Litauen Litauen 4.508.589 161,3 1.955.544 70,0 % 1.879.075 67,2 % 15. Oktober 2022
Luxemburg Luxemburg 1.280.779 202,6 480.014 75,9 % 473.245 74,8 % 12. Mai 2022
Malaysia Malaysia 72.112.558 222,8 28.099.628 86,8 % 27.504.819 85,0 % 21. September 2022
Malediven Malediven 951.199 176,0 399.126 73,8 % 385.014 71,2 % 17. Oktober 2022
Malta Malta 1.334.887 254,1 477.836 91,0 % 470.728 89,6 % 16. September 2022
Isle of Man Isle of Man 188.388 221,5 69.450 81,7 % 66.751 78,5 % 14. März 2022
Marokko Marokko 55.141.078 149,4 24.986.182 67,7 % 23.478.255 63,6 % 22. August 2022
Mexiko Mexiko 225.063.079 172,8 99.071.001 76,1 % 81.849.962 62,8 % 16. Dezember 2022
Moldau Republik Moldau 2.241.785 85,6 1.101.302 42,1 % 1.071.341 40,9 % 18. September 2022
Monaco Monaco 69.256 176,5 25.233 64,3 % 24.840 63,3 % 4. September 2022
Mongolei Mongolei 5.661.358 172,7 2.283.182 69,6 % 2.183.781 66,6 % 21. Oktober 2022
Montenegro Montenegro 672.100 108,1 290.667 46,8 % 282.729 45,5 % 4. Mai 2022
Neuseeland Neuseeland 11.754.109 231,2 4.297.430 84,5 % 4.132.219 81,3 % 20. September 2022
Niederlande Niederlande 36.249.856 207,8 13.387.020 76,8 % 12.954.555 74,3 % 15. Mai 2022
Nigeria Nigeria 91.552.088 43,3 63.982.167 30,3 % 51.397.212 24,3 % 13. November 2022
Nordmazedonien Nordmazedonien 1.860.276 89,3 854.187 41,0 % 837.735 40,2 % 21. August 2022
Nordzypern Nordzypern 861.519 230,2 301.673 80,6 % 313.067 83,6 % 29. August 2022
Norwegen Norwegen 12.012.847 223,3 4.345.846 80,8 % 4.053.316 75,3 % 6. Oktober 2022
Osterreich Österreich 20.079.489 224,2 6.744.762 75,3 % 6.523.707 72,8 % 11. März 2023
Palastina Autonomiegebiete Palästina 3.748.571 78,0 2.012.767 41,9 % 1.776.973 37,0 % 18. Oktober 2022
Pakistan Pakistan 301.078.608 133,7 139.584.810 62,0 % 132.169.217 58,7 % 17. November 2022
Papua-Neuguinea Papua-Neuguinea 516.946 5,7 376.350 4,1 % 315.711 3,5 % 5. März 2023
Philippinen Philippinen 166.730.872 152,2 77.838.774 71,0 % 73.261.465 66,9 % 6. Oktober 2022
Polen Polen 57.002.766 150,2 22.791.478 60,1 % 22.564.559 59,5 % 8. Oktober 2022
Portugal Portugal 27.370.776 265,8 9.771.557 94,9 % 8.884.970 86,3 % 11. Dezember 2022
Rumänien Rumänien 16.820.238 87,2 8.172.735 42,4 % 8.112.255 42,1 % 5. Juni 2022
Russland Russland 183.889.038 126,1 87.669.148 60,1 % 78.929.790 54,1 % 1. Januar 2023
San Marino San Marino 71.623 211,0 24.328 71,7 % 26.670 78,6 % 9. Oktober 2022
Saudi-Arabien Saudi-Arabien 67.577.413 194,1 26.828.122 77,1 % 25.237.637 72,5 % 22. August 2022
Schweden Schweden 22.881.367 221,0 7.844.848 75,8 % 7.661.868 74,0 % 25. August 2022
Schweiz Schweiz 16.930.555 194,7 6.096.277 70,1 % 6.008.219 69,1 % 6. März 2023
Serbien Serbien 8.531.418 123,5 3.353.241 48,5 % 3.277.242 47,4 % 6. Juni 2022
Singapur Singapur 14.326.294 252,0 5.024.384 88,4 % 5.004.693 88,0 % 12. September 2022
Slowakei Slowakei 7.153.405 131,0 2.838.382 52,0 % 2.789.786 51,1 % 18. September 2022
Slowenien Slowenien 3.009.503 143,3 1.263.318 60,2 % 1.220.906 58,1 % 26. August 2022
Spanien Spanien 105.459.628 222,8 39.284.977 83,0 % 39.208.028 82,8 % 15. Februar 2023
Sudafrika Südafrika 37.907.435 63,1 22.441.947 37,4 % 19.513.195 32,5 % 18. November 2022
Korea Sud Südkorea 131.178.880 253,5 45.141.070 87,2 % 44.711.856 86,4 % 29. Dezember 2022
Tansania Tansania 32.893.229 53,5 28.204.265 45,9 % 25.798.225 41,9 % 6. November 2022
Taiwan Taiwan 67.316.451 285,6 21.872.466 92,8 % 20.742.238 88,0 % 9. März 2023
Thailand Thailand 142.491.439 204,1 56.993.226 81,7 % 53.464.864 76,6 % 23. September 2022
Tschechien Tschechien 18.229.721 170,4 6.977.769 65,2 % 6.892.909 64,4 % 16. Oktober 2022
Turkei Türkei 152.363.561 180,7 57.930.744 68,7 % 53.164.849 63,0 % 7. Oktober 2022
Ukraine Ukraine 31.668.577 75,7 15.774.300 37,7 % 15.153.577 36,2 % 27. Februar 2022
Ungarn Ungarn 16.716.486 171,5 6.403.956 65,7 % 6.189.220 63,5 % 7. April 2022
Uruguay Uruguay 8.740.796 251,6 3.001.585 86,4 % 2.893.669 83,3 % 9. Oktober 2022
Vereinigte Arabische Emirate Vereinigte Arabische Emirate 24.922.054 252,0 9.991.089 101,0 % 9.792.266 99,0 % 6. Juli 2022
Vereinigtes Konigreich Vereinigtes Königreich 151.248.820 224,6 53.813.491 79,9 % 50.762.968 75,4 % 22. Dezember 2022
Vereinigte Staaten Vereinigte Staaten 672.537.312 202,6 269.650.596 81,2 % 230.142.115 69,3 % 8. März 2023
Vietnam Vietnam 265.114.272 270,1 90.399.369 92,1 % 85.553.108 87,1 % 15. Dezember 2022
Zypern Republik Zypern 1.816.692 218,1 666.584 80,0 % 655.404 78,7 % 21. August 2022

Weltweit wurden nach Zählung der WHO bis zum 22. Dezember 2022 ca. 13,0 Milliarden Impfungen durchgeführt; das entspricht etwa 162 Impfstoffdosen pro 100 Menschen. Dies umfasst sowohl die Grundimmunisierung, die je nach Impfstoff aus einer, zwei oder drei Impfdosen besteht, wie auch evtl. Auffrischungsimpfungen.

Siehe auch

Literatur

Weblinks

Commons: COVID-19-Impfstoffentwicklung – Sammlung von Bildern, Videos und Audiodateien

Einzelnachweise

  1. a b COVID-19 vaccine doses administered per 100 people. OWID; (englisch, Letzte Aktualisierung siehe Weltkarte. Daten basieren auf offiziellen Quellen. Alle Impfdosen, inklusive Booster, werden separat gezählt. Da dieselbe Person mehr als eine Impfdosis erhalten kann, kann die Anzahl der Impfdosen je 100 Personen höher sein als 100. Alle Impfdosen werden somit einzeln gezählt, also jeweils 1. und 2. Dosis separat, zzgl. jeweils 1., 2. und 3. Booster separat etc.).
  2. Übersicht aller Corona-Impfstoffe. In: Gelbe Liste. Abgerufen am 29. September 2022: „Hier finden Sie eine Liste der wichtigsten Coronavirus-Impfstoffe, die aktuell zur Prävention von COVID-19 weltweit entwickelt und erforscht werden. Aktuell befinden sich 172 Impfstoffkandidaten in klinischen Studien und 199 in präklinischer Entwicklung. 47 Kandidaten wurden bereits zugelassen, sechs davon in der EU.“
  3. K. I. Notarte, J. A. Catahay, J. V. Velasco, A. Pastrana, A. T. Ver, F. C. Pangilinan, P. J. Peligro, M. Casimiro, J. J. Guerrero, M. M. Gellaco, G. Lippi, B. M. Henry, C. Fernández-de-Las-Peñas: Impact of COVID-19 vaccination on the risk of developing long-COVID and on existing long-COVID symptoms: A systematic review. In: EClinicalMedicine. Band 53, November 2022, S. 101624, doi:10.1016/j.eclinm.2022.101624, PMID 36051247, PMC 9417563 (freier Volltext).
  4. A. Mumtaz, A. A. Sheikh, A. M. Khan, S. N. Khalid, J. Khan, A. Nasrullah, S. Sagheer, A. B. Sheikh: COVID-19 Vaccine and Long COVID: A Scoping Review. In: Life. Band 12, Nummer 7, Juli 2022, S. , doi:10.3390/life12071066, PMID 35888154, PMC 9324565 (freier Volltext).
  5. P. Gao, J. Liu, M. Liu: Effect of COVID-19 Vaccines on Reducing the Risk of Long COVID in the Real World: A Systematic Review and Meta-Analysis. In: International Journal of Environmental Research and Public Health. Band 19, Nummer 19, September 2022, S. , doi:10.3390/ijerph191912422, PMID 36231717, PMC 9566528 (freier Volltext).
  6. a b c Robert Koch-Institut: RKI – Impfen – COVID-19 und Impfen: Antworten auf häufig gestellte Fragen (FAQ). 25. August 2021, abgerufen am 26. August 2021.
  7. W. H. Chen, U. Strych, P. J. Hotez, M. E. Bottazzi: The SARS-CoV-2 Vaccine Pipeline: an Overview. In: Current tropical medicine reports. März 2020, doi:10.1007/s40475-020-00201-6, PMID 32219057, PMC 7094941 (freier Volltext).
  8. a b J. Pallesen, N. Wang, K. S. Corbett, D. Wrapp, R. N. Kirchdoerfer, H. L. Turner, C. A. Cottrell, M. M. Becker, L. Wang, W. Shi, W. P. Kong, E. L. Andres, A. N. Kettenbach, M. R. Denison, J. D. Chappell, B. S. Graham, A. B. Ward, J. S. McLellan: Immunogenicity and structures of a rationally designed prefusion MERS-CoV spike antigen. In: Proceedings of the National Academy of Sciences. Band 114, Nummer 35, 08 2017, S. E7348–E7357, doi:10.1073/pnas.1707304114, PMID 28807998, PMC 5584442 (freier Volltext).
  9. D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh, O. Abiona, B. S. Graham, J. S. McLellan: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. In: Science. Band 367, Nummer 6483, 03 2020, S. 1260–1263, doi:10.1126/science.abb2507, PMID 32075877, PMC 7164637 (freier Volltext).
  10. a b Two homegrown vaccines receive emergency use license. 1. November 2021, abgerufen am 28. Dezember 2021 (englisch).
  11. Frances E. Lund, Troy D. Randall: Scent of a vaccine. Science, 23. Juli 2021, Jahrgang 373, Ausgabe 6553, S. 397–399, PMID 34437109, doi:10.1126/science.abg9857
  12. Lars Fischer: Nasenspray-Impfung: Infektionen bei Geimpften sicher verhindern. Spektrum.de, 7. Juli 2021.
  13. O. J. Watson, G. Barnsley, J. Toor, A. B. Hogan, P. Winskill, A. C. Ghani: Global impact of the first year of COVID-19 vaccination: a mathematical modelling study. In: The Lancet. Infectious diseases. Band 22, Nummer 9, September 2022, S. 1293–1302, doi:10.1016/S1473-3099(22)00320-6, PMID 35753318, PMC 9225255 (freier Volltext).
  14. a b J. Zhang, H. Zeng, J. Gu, H. Li, L. Zheng, Q. Zou: Progress and Prospects on Vaccine Development against SARS-CoV-2. In: Vaccines. Band 8, Nummer 2, März 2020, S. , doi:10.3390/vaccines8020153, PMID 32235387.
  15. a b c d e f E. Padron-Regalado: Vaccines for SARS-CoV-2: Lessons from Other Coronavirus Strains. In: Infectious diseases and therapy. April 2020, doi:10.1007/s40121-020-00300-x, PMID 32328406, PMC 7177048 (freier Volltext).
  16. M. Bhattacharya, A. R. Sharma, P. Patra, P. Ghosh, G. Sharma, B. C. Patra, S. S. Lee, C. Chakraborty: Development of epitope-based peptide vaccine against novel coronavirus 2019 (SARS-COV-2): Immunoinformatics approach. In: Journal of medical virology. Februar 2020, doi:10.1002/jmv.25736, PMID 32108359.
  17. S. F. Ahmed, A. A. Quadeer, M. R. McKay: Preliminary Identification of Potential Vaccine Targets for the COVID-19 Coronavirus (SARS-CoV-2) Based on SARS-CoV Immunological Studies. In: Viruses. Band 12, Nummer 3, Februar 2020, S. , doi:10.3390/v12030254, PMID 32106567.
  18. A. C. Walls, Y. J. Park, M. A. Tortorici, A. Wall, A. T. McGuire, D. Veesler: Structure, Function, and Antigenicity of the SARS-CoV-2 Spike Glycoprotein. In: Cell. März 2020, doi:10.1016/j.cell.2020.02.058, PMID 32155444.
  19. E. Prompetchara, C. Ketloy, T. Palaga: Immune responses in COVID-19 and potential vaccines: Lessons learned from SARS and MERS epidemic. In: Asian Pacific journal of allergy and immunology. März 2020, doi:10.12932/AP-200220-0772, PMID 32105090.
  20. Y. R. Guo, Q. D. Cao u. a.: The origin, transmission and clinical therapies on coronavirus disease 2019 (COVID-19) outbreak – an update on the status. In: Military Medical Research. Band 7, Nummer 1, 03 2020, S. 11, doi:10.1186/s40779-020-00240-0, PMID 32169119, PMC 7068984 (freier Volltext) (Review).
  21. D. Wrapp, N. Wang, K. S. Corbett, J. A. Goldsmith, C. L. Hsieh, O. Abiona, B. S. Graham, J. S. McLellan: Cryo-EM structure of the 2019-nCoV spike in the prefusion conformation. In: Science. Band 367, Nummer 6483, März 2020, S. 1260–1263, doi:10.1126/science.abb2507, PMID 32075877.
  22. a b c D. S. Khoury, D. Cromer, A. Reynaldi, T. E. Schlub, A. K. Wheatley, J. A. Juno, K. Subbarao, S. J. Kent, J. A. Triccas, M. P. Davenport: Neutralizing antibody levels are highly predictive of immune protection from symptomatic SARS-CoV-2 infection. In: Nature medicine. Band 27, Nummer 7, 07 2021, S. 1205–1211, doi:10.1038/s41591-021-01377-8, PMID 34002089, 17. Mai 2021.
  23. P. A. Kristiansen, M. Page, V. Bernasconi, G. Mattiuzzo, P. Dull, K. Makar, S. Plotkin, I. Knezevic: WHO International Standard for anti-SARS-CoV-2 immunoglobulin. In: The Lancet. Band 397, Nummer 10282, 04 2021, S. 1347–1348, doi:10.1016/S0140-6736(21)00527-4, PMID 33770519, PMC 7987302 (freier Volltext).
  24. a b c d D. G. Ahn, H. J. Shin, M. H. Kim, S. Lee, H. S. Kim, J. Myoung, B. T. Kim, S. J. Kim: Current Status of Epidemiology, Diagnosis, Therapeutics, and Vaccines for Novel Coronavirus Disease 2019 (COVID-19). In: Journal of microbiology and biotechnology. Band 30, Nummer 3, März 2020, S. 313–324, doi:10.4014/jmb.2003.03011, PMID 32238757.
  25. Coronavirus-Varianten: Escape-Mutationen machen Sorgen. In: pharmazeutische-zeitung.de. 23. Januar 2021, abgerufen am 9. Februar 2021.
  26. Nach erster Covid-19-Erkrankung schwebt Patient mit Südafrika-Mutante in Lebensgefahr. In: tah.de. 12. Februar 2021, ehemals im Original (nicht mehr online verfügbar); abgerufen am 13. Februar 2021.@1@2Vorlage:Toter Link/www.tah.de (Seite nicht mehr abrufbar. Suche in Webarchiven)
  27. Yixuan J. Hou, Shiho Chiba u. a.: SARS-CoV-2 D614G variant exhibits efficient replication ex vivo and transmission in vivo. In: Science, S. eabe8499, doi:10.1126/science.abe8499.
  28. Takahiko Koyama, Daniel Platt, Laxmi Parida: Variant analysis of SARS-CoV-2 genomes (Memento vom 24. November 2020 im Internet Archive). Bulletin of the World Health Organization, 2. Juni 2020. Abgerufen am 25. November 2020.
  29. BioNTech/Pfizer weniger effektiv bei Südafrika-Mutation. In: oe24.at. 28. Januar 2021, abgerufen am 13. Februar 2021.
  30. Bei jungen Menschen kaum wirksam? Rückschlag für AstraZeneca bei südafrikanischer Variante. In: deutsche-apotheker-zeitung.de. 8. Februar 2021, abgerufen am 15. März 2021.
  31. S. A. Madhi et al.: Efficacy of the ChAdOx1 nCoV-19 Covid-19 Vaccine against the B.1.351 Variant. The New England Journal of Medicine, 16. März 2021, doi:10.1056/NEJMoa2102214
  32. doccheck.com: Südafrika-Variante: Das Vakzin-Ranking vom 12. Mai 2021
  33. Daniela Hüttemann: Drei Monate Impfabstand besser als sechs Wochen in Pharmazeutische Zeitung vom 19. Februar 2021
  34. Q. Wang, L. Zhang, K. Kuwahara, L. Li, Z. Liu, T. Li, H. Zhu, J. Liu, Y. Xu, J. Xie, H. Morioka, N. Sakaguchi, C. Qin, G. Liu: Immunodominant SARS Coronavirus Epitopes in Humans Elicited both Enhancing and Neutralizing Effects on Infection in Non-human Primates. In: ACS infectious diseases. Band 2, Nummer 5, 30. März 2016, S. 361–376, doi:10.1021/acsinfecdis.6b00006, PMID 27627203, PMC 7075522 (freier Volltext).
  35. Paul-Ehrlich-Institut: Was sind infektionsverstärkende Antikörper (ADE) und sind sie ein Problem? In: pei.de. 30. Juli 2020, archiviert vom Original am 30. August 2021; abgerufen am 23. August 2021.
  36. Paul-Ehrlich-Institut: Was sind infektionsverstärkende Antikörper (ADE) und sind sie ein Problem? In: pei.de. 7. September 2021, archiviert vom Original am 13. September 2021; abgerufen am 4. Oktober 2021.
  37. S. Jiang, M. E. Bottazzi, L. Du, S. Lustigman, C. T. Tseng, E. Curti, K. Jones, B. Zhan, P. J. Hotez: Roadmap to developing a recombinant coronavirus S protein receptor-binding domain vaccine for severe acute respiratory syndrome. In: Expert review of vaccines. Band 11, Nummer 12, Dezember 2012, S. 1405–1413, doi:10.1586/erv.12.126, PMID 23252385, PMC 3586247 (freier Volltext).
  38. Y. Honda-Okubo, D. Barnard, C. H. Ong, B. H. Peng, C. T. Tseng, N. Petrovsky: Severe acute respiratory syndrome-associated coronavirus vaccines formulated with delta inulin adjuvants provide enhanced protection while ameliorating lung eosinophilic immunopathology. In: Journal of Virology. Band 89, Nummer 6, März 2015, S. 2995–3007, doi:10.1128/JVI.02980-14, PMID 25520500, PMC 4337527 (freier Volltext).
  39. P. Fine, K. Eames, D. L. Heymann: “Herd immunity”: a rough guide. In: Clinical Infectious Diseases. Band 52, Nummer 7, April 2011, S. 911–916, doi:10.1093/cid/cir007, PMID 21427399.
  40. a b Roy M Anderson: Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. In: The Lancet. Band 396, Nr. 10263. Elsevier, 4. November 2020, S. 1614–1616, hier: 1615, doi:10.1016/S0140-6736(20)32318-7, PMID 33159850, PMC 7836302 (freier Volltext) – (englisch, thelancet.com [PDF; 460 kB; abgerufen am 13. Mai 2021] ε ist hier mit E, pc mit Vc angegeben. Die Formel für E entspricht genannter Formel, nur aufgelöst nach E.): “For a vaccine with 100 % efficacy that gives life-long protection, the level of herd immunity as a proportion of the population, pc, where R0 is the basic reproduction number. If the proportional vaccine efficacy, ε, is considered, the simple expression for pc becomes / ε.”
  41. M.A. Billah, M.M. Miah, M.N. Khan: Reproductive number of coronavirus: A systematic review and meta-analysis based on global level evidence. In: PLOS ONE. 15. Jahrgang, Nr. 11, 11. November 2020, S. e0242128, doi:10.1371/journal.pone.0242128, PMID 33175914, PMC 7657547 (freier Volltext), bibcode:2020PLoSO..1542128B.
  42. a b Talha Khan Burki: Lifting of COVID-19 restrictions in the UK and the Delta variant. In: The Lancet. 12. Juli 2021, doi:10.1016/S2213-2600(21)00328-3, online. Zitat: “The reproductive number (R0) for the original strain of SARS-CoV-2 is roughly 2.5. The Alpha variant (B.1.1.7), which was previously dominant in the UK, is around 60 % more transmissible than the parental virus. The Delta variant is roughly 60 % more transmissible than the Alpha variant, which translates to an R0 of nearly 7.”
  43. S. M. Bartsch, K. J. O’Shea, M. C. Ferguson, M. E. Bottazzi, P. T. Wedlock, U. Strych, J. A. McKinnell, S. S. Siegmund, S. N. Cox, P. J. Hotez, B. Y. Lee: Vaccine Efficacy Needed for a COVID-19 Coronavirus Vaccine to Prevent or Stop an Epidemic as the Sole Intervention. In: American journal of preventive medicine. Band 59, Nummer 4, 10 2020, S. 493–503, doi:10.1016/j.amepre.2020.06.011, PMID 32778354, PMC 7361120 (freier Volltext).
  44. Science Brief: COVID-19 Vaccines and Vaccination. Centers for Disease Control and Prevention, 27. Mai 2021, abgerufen am 17. Juni 2021: „Substantial reductions in SARS-CoV-2 infections (both symptomatic and asymptomatic) will reduce overall levels of disease, and therefore, viral transmission in the United States. However, investigations are ongoing to assess further the impact of COVID-19 vaccination on transmission.“
  45. Jens Spahn – Herdenimmunität durch freiwillige Corona-Impfung erreichbar. kma Online, Thieme Verlag, 16. September 2020.
  46. Jens Spahn: Ende des Sommers könnten 60 Prozent der Bürger geimpft sein. In: Redaktionsnetzwerk Deutschland, 15. Dezember 2020.
  47. Marco Krefting: Corona und das Impfen: Wann ist die Gesellschaft immun? In: heise.de. 12. Januar 2021, abgerufen am 21. Januar 2021.
  48. Roy M. Anderson u.a.: Challenges in creating herd immunity to SARS-CoV-2 infection by mass vaccination. In: The Lancet, Band 396, Ausgabe 10263, 21. November 2020.
  49. Können Geimpfte das Coronavirus weiterverbreiten? In: swr.de. Abgerufen am 29. Dezember 2020.
  50. AstraZeneca-Impfstoff verhindert Virus-Übertragung. In: apotheke-adhoc.de. Abgerufen am 21. Februar 2021.
  51. EU-Kommission lässt Biontech-Impfung für Kinder ab 12 Jahren zu. 31. Mai 2021;.
  52. Welche Impfquote ist notwendig, um COVID-19 zu kontrollieren? (PDF) In: Epidemiologisches Bulletin, Nr. 27/2021. Robert Koch-Institut, 8. Juli 2021, S. 3–13, hier S. 4, abgerufen am 20. Juli 2021.
  53. „Virologe Streeck: Wir erreichen mit diesen Impfstoffen keine Herdenimmunität“. Pandemie/Impfung – Interview mit Hendrik Streeck. In: Redaktionsnetzwerk Deutschland (mit Bezug auf ein Interview mit der Welt). 22. Juli 2021, abgerufen am 23. Juli 2021.
  54. Robert Koch-Institut: Vorbereitung auf den Herbst/Winter 2021/22 (PDF, 501 KB), 22. Juli 2021.
  55. Gavi: Jennifer Juno, Adam Wheatley: Mounting evidence suggests COVID vaccines do reduce transmission. How does this work? 11. Mai 2021
  56. Public Health England: „Effectiveness against transmission, S. 5, Fußnoten 15, 16“. In: COVID-19 vaccine surveillance report Week 29. 22. Juli 2021, abgerufen am 23. Juli 2021.
  57. David A. McAllister u. a.: Effect of vaccination on transmission of COVID-19: an observational study in healthcare workers and their households. In: medRvix – Preprint Server. 21. März 2021, doi:10.1101/2021.03.11.21253275, online.
  58. Ross J. Harris, Jennifer A. Hall: Effect of Vaccination on Household Transmission of SARS-CoV-2 in England. In: Infectious diseases and therapy. 23. Juni 2021, doi:10.1056/NEJMc2107717, online
  59. a b Reuters zitiert ggü. Washington Post bestätigtes internes CDC-Dokument: ‘The war has changed,’ CDC says, calling for new response to Delta variant. In: CDC-Dokument: Improving communications around vaccine breakthrough and vaccine effectiveness. 30. Juli 2021, abgerufen am 31. Juli 2021.
  60. Meredith McMorrow (internes CDC-Dokument): Ungeschwärztes CDC-Dokument im Original: Improving communications around vaccine breakthrough and vaccine effectiveness. (PDF) In: Washington Post, Echtheit bestätigt durch CDC (Reuters). 29. Juli 2021, ehemals im Original (nicht mehr online verfügbar); abgerufen am 9. August 2021.@1@2Vorlage:Toter Link/context-cdn.washingtonpost.com (Seite nicht mehr abrufbar. Suche in Webarchiven)
  61. a b David W. Eyre et al.: The impact of SARS-CoV-2 vaccination on Alpha & Delta variant transmission. Preprint, geposted am 15. Oktober 2021, medRxiv 2021.09.28.21264260; doi:10.1101/2021.09.28.21264260.
  62. Brechje de Gier et al.: Vaccine effectiveness against SARS-CoV-2 transmission to household contacts during dominance of Delta variant (B.1.617.2), the Netherlands, August to September 2021. Eurosurveillance, Band 26, Nr. 44 (November 2021), doi:10.2807/1560-7917.ES.2021.26.44.2100977. PMID 34738514; PMC 8569927 (freier Volltext)
    Zitat: “Effectiveness of full vaccination of the index case against transmission to unvaccinated and fully vaccinated household contacts, respectively, was 63 % (95% confidence interval (CI): 46–75) and 40 % (95% CI: 20–54), in addition to the direct protection of vaccination of contacts against infection.”
  63. COVID-19-Strategiepapiere und Nationaler Pandemieplan. In: rki.de. 21. Dezember 2021, archiviert vom Original am 21. Dezember 2021; abgerufen am 21. Dezember 2021: „Die Variante Omikron ist sehr leicht übertragbar und führt auch bei vollständig Geimpften und Genesenen häufig zu Infektionen, die weitergegeben werden können.“
  64. Lars Fischer in Spektrum.de: „Infektionen bei Geimpften sicher verhindern“. In: Medizin. 7. Juli 2021, abgerufen am 21. Juli 2021.
  65. Thorsten Winter: „Inzidenz ist der früheste Parameter für die Pandemiebeurteilung“. In: FAZ.net. 25. August 2021, abgerufen am 26. August 2021.
  66. Geimpfte sind nach Corona-Infektion weniger und kürzer ansteckend als Ungeimpfte. Abgerufen am 19. November 2021 (österreichisches Deutsch).
  67. RKI – Navigation – Können Personen, die vollständig geimpft sind, das Virus weiterhin übertragen? Archiviert vom Original am 18. November 2021; abgerufen am 19. November 2021.
  68. Severe acute respiratory syndrome vaccine development: Experiences of vaccination against avian infectious bronchitis coronavirus. In: Avian Pathology. 32. Jahrgang, Nr. 6, 2003, S. 567–582, doi:10.1080/03079450310001621198, PMID 14676007.
  69. A. Pratelli: High-cell-passage canine coronavirus vaccine providing sterilising immunity. In: Journal of Small Animal Practice. Band 48, Nummer 10, Oktober 2007, S. 574–578, doi:10.1111/j.1748-5827.2007.00416.x, PMID 17877547.
  70. M. Hebben et. al.: Modified vaccinia virus Ankara as a vaccine against feline coronavirus: immunogenicity and efficacy. In: Journal of Feline Medicine and Surgery. Band 6, Nummer 2, April 2004, S. 111–118, doi:10.1016/j.jfms.2003.12.011, PMID 15123156.
  71. Effects of a SARS-associated coronavirus vaccine in monkeys. In: The Lancet. 362. Jahrgang, Nr. 9399, 2003, S. 1895–1896, doi:10.1016/S0140-6736(03)14962-8, PMID 14667748.
  72. Immunogenicity of an adenoviral-based Middle East Respiratory Syndrome coronavirus vaccine in BALB/C mice. In: Vaccine. 32. Jahrgang, Nr. 45, 2014, S. 5975–5982, doi:10.1016/j.vaccine.2014.08.058, PMID 25192975.
  73. a b Development of SARS vaccines and therapeutics is still needed. In: Future Virology. 8. Jahrgang, Nr. 1, 2013, S. 1–2, doi:10.2217/fvl.12.126.
  74. a b SARS (severe acute respiratory syndrome). National Health Service, 5. März 2020, abgerufen am 31. Januar 2020.
  75. M. M. Shehata, M. R. Gomaa, M. A. Ali et al.: Middle East respiratory syndrome coronavirus: a comprehensive review. Front. Med. 10, 120–136 (2016). doi:10.1007/s11684-016-0430-6
  76. J. T. Lin et. al.: Safety and immunogenicity from a phase I trial of inactivated severe acute respiratory syndrome coronavirus vaccine. In: Antiviral therapy. Band 12, Nummer 7, 2007, S. 1107–1113, PMID 18018769.
  77. J. E. Martin et. al.: A SARS DNA vaccine induces neutralizing antibody and cellular immune responses in healthy adults in a Phase I clinical trial. In: Vaccine. Band 26, Nummer 50, November 2008, S. 6338–6343, doi:10.1016/j.vaccine.2008.09.026, PMID 18824060, PMC 2612543 (freier Volltext).
  78. J. H. Beigel, et. al.: Safety and tolerability of a novel, polyclonal human anti-MERS coronavirus antibody produced from transchromosomic cattle: a phase 1 randomised, double-blind, single-dose-escalation study. In: The Lancet. Infectious diseases. Band 18, Nummer 4, 04 2018, S. 410–418, doi:10.1016/S1473-3099(18)30002-1, PMID 29329957, PMC 5871563 (freier Volltext).
  79. K. Modjarrad et. al.: Safety and immunogenicity of an anti-Middle East respiratory syndrome coronavirus DNA vaccine: a phase 1, open-label, single-arm, dose-escalation trial. In: The Lancet. Infectious diseases. Band 19, Nummer 9, September 2019, S. 1013–1022, doi:10.1016/S1473-3099(19)30266-X, PMID 31351922.
  80. a b J. Pang et. al.: Potential Rapid Diagnostics, Vaccine and Therapeutics for 2019 Novel Coronavirus (2019-nCoV): A Systematic Review. In: Journal of clinical medicine. Band 9, Nummer 3, Februar 2020, doi:10.3390/jcm9030623, PMID 32110875.
  81. T. Kramps, K. Elbers: Introduction to RNA Vaccines. In: Methods in molecular biology. Band 1499, 2017, S. 1–11, doi:10.1007/978-1-4939-6481-9_1, PMID 27987140.
  82. Ugur Sahin et al.: Personalized RNA mutanome vaccines mobilize poly-specific therapeutic immunity against cancer. In: Nature. Band 547, Nr. 7662, Juli 2017, S. 222–226, doi:10.1038/nature23003.
  83. Martin Alberer et al.: Safety and immunogenicity of a mRNA rabies vaccine in healthy adults: an open-label, non-randomised, prospective, first-in-human phase 1 clinical trial. In: The Lancet. Band 390, Nr. 10101, Juli 2017, S. 1511–1520, doi:10.1016/S0140-6736(17)31665-3.
  84. Norbert Pardi et al.: Recent advances in mRNA vaccine technology. In: Current Opinion in Immunology. Band 65, August 2020, S. 14–20, doi:10.1016/j.coi.2020.01.008.
  85. Norbert Pardi et al.: mRNA vaccines – a new era in vaccinology. In: Nature Reviews Drug Discovery. Band 17, April 2018, S. 261–279, doi:10.1038/nrd.2017.243.
  86. China CDC developing novel coronavirus vaccine (Memento des Originals vom 26. Januar 2020 im Internet Archive), 26. Januar 2020. Abgerufen am 28. Januar 2020 
  87. Lee Jeong-ho: Chinese scientists race to develop vaccine as coronavirus death toll jumps In: South China Morning Post, 26. Januar 2020. Abgerufen am 28. Januar 2020 
  88. a b c Hong Kong researchers have developed coronavirus vaccine, expert reveals In: South China Morning Post, 28. Januar 2020 
  89. Eli Chen: Wash U Scientists Are Developing A Coronavirus Vaccine, St. Louis Public Radio, 5. März 2020. Abgerufen am 6. März 2020 
  90. Susanne Preuß: Trump kassiert Korb im Kampf um Impfstoffhersteller. In: FAZ.net. 15. März 2020, abgerufen am 15. März 2020.
  91. Hanna Ziady: Biotech company Moderna says its coronavirus vaccine is ready for first tests, CNN, 26. Februar 2020. Abgerufen am 2. März 2020 
  92. a b c d e f g h i j Impfstoffe gegen Coronavirus – Der aktuelle Forschungsstand – vfa. Verband Forschender Arzneimittelhersteller, Stand 31. Dezember 2020 (ständig aktualisiert), abgerufen am 1. Januar 2021.
  93. CEPI welcomes UK Government’s funding and highlights need for $2 billion to develop a vaccine against COVID-19. Coalition for Epidemic Preparedness Innovations, Oslo, Norway, 6. März 2020, abgerufen am 23. März 2020.
  94. Stanley A. Plotkin, A. Caplan: Extraordinary diseases require extraordinary solutions. In: Vaccine. Band 38, Nummer 24, 05 2020, S. 3987–3988, doi:10.1016/j.vaccine.2020.04.039, PMID 32331807, PMC 7167540 (freier Volltext).
  95. a b c d e f N. Eyal, M. Lipsitch, P. G. Smith: Human challenge studies to accelerate coronavirus vaccine licensure. In: The Journal of Infectious Diseases. März 2020, doi:10.1093/infdis/jiaa152, PMID 32232474, PMC 7184325 (freier Volltext).
  96. G. O. Schaefer, Clarence C. Tam, Julian Savulescu, Teck Chuan Voo: Covid-19 Vaccine Development: Time to Consider Sars-Cov-2 Challenge Studies? In: SSRN Electronic Journal. , doi:10.2139/ssrn.3568981.
  97. a b Seema K. Shah, Franklin G. Miller, Thomas C. Darton, Devan Duenas, Claudia Emerson, Holly Fernandez Lynch, Euzebiusz Jamrozik, Nancy S. Jecker, Dorcas Kamuya, Melissa Kapulu, Jonathan Kimmelman, Douglas MacKay, Matthew J. Memoli, Sean C. Murphy, Ricardo Palacios, Thomas L. Richie, Meta Roestenberg, Abha Saxena, Katherine Saylor, Michael J. Selgelid, Vina Vaswani, Annette Rid: Ethics of controlled human infection to study COVID-19. In: Science., S. eabc1076, 22. Mai 2020. doi:10.1126/science.abc1076.
  98. B. Bambery, M. Selgelid, C. Weijer, J. Savulescu, A. J. Pollard: Ethical Criteria for Human Challenge Studies in Infectious Diseases. In: Public health ethics. Band 9, Nummer 1, April 2016, S. 92–103, doi:10.1093/phe/phv026, PMID 29731811, PMC 5926904 (freier Volltext).
  99. E. Jamrozik, M. J. Selgelid: Human Challenge Studies in Endemic Settings: Ethical and Regulatory Issues. In: Springer Briefs in Ethics, Springer, 2020. ISBN 978-3-030-41480-1.
  100. a b c d E. Callaway: Should scientists infect healthy people with the coronavirus to test vaccines? In: Nature. Band 580, Nummer 7801, 2. April 2020, S. 17, doi:10.1038/d41586-020-00927-3, PMID 32218549.
  101. a b Jon Cohen: Speed coronavirus vaccine testing by deliberately infecting volunteers? Not so fast, some scientists warn. In: Science, 31. Mai 2020. doi:10.1126/science.abc0006.
  102. Imperial College COVID-19 Response Team – Patrick G. T. Walker, Charles Whittaker, Oliver Watson, Marc Baguelin, Kylie E. C. Ainslie, Sangeeta Bhatia, Samir Bhatt, Adhiratha Boonyasiri, Olivia Boyd, Lorenzo Cattarino, Zulma Cucunubá, Gina Cuomo-Dannenburg, Amy Dighe, Christl A. Donnelly, Ilaria Dorigatti, Sabine van Elsland, Rich FitzJohn, Seth Flaxman, Han Fu, Katy Gaythorpe, Lily Geidelberg, Nicholas Grassly, Will Green, Arran Hamlet, Katharina Hauck, David Haw, Sarah Hayes, Wes Hinsley, Natsuko Imai, David Jorgensen, Edward Knock, Daniel Laydon, Swapnil Mishra, Gemma Nedjati-Gilani, Lucy C. Okell, Steven Riley, Hayley Thompson, Juliette Unwin, Robert Verity, Michaela Vollmer, Caroline Walters, Hao Wei Wang, Yuanrong Wang, Peter Winskill, Xiaoyue Xi, Neil M Ferguson, Azra C. Ghani: Report 12: The Global Impact of COVID-19 and Strategies for Mitigation and Suppression (Memento vom 21. April 2020 im Internet Archive), 26. März 2020.
  103. Eric Boodman: Coronavirus vaccine clinical trial starting without usual animal data. STAT News, 13. März 2020, abgerufen am 19. April 2020.
  104. B. Kraft, C. Windeck, M. Mantel: Anleitung: Mit Folding@home für die Suche nach Coronavirus-Medikamenten rechnen. heise online, 2. April 2020.
  105. Oliver Bünte: Coronavirus-Forschung: Stanford-Wissenschaftler bitten um Rechenressourcen. In: heise.de. 3. März 2020, abgerufen am 20. März 2020.
  106. Folding@home takes up the fight against COVID-19 / 2019-nCoV. 27. Februar 2020;.
  107. Nero24: TN-Grid weiteres BOINC-Projekt zur SARS-CoV-2 Erforschung – Planet 3DNow! 2. April 2020.
  108. Volunteers rally to Rosetta@Home to stop COVID-19 – Institute for Protein Design. Institute for Protein Design, University of Washington; 26. März 2020.
  109. Your computer can help scientists seek potential COVID-19 treatments. The Scripps Research Institute, 1. April 2020.
  110. Bayerischer Rundfunk: So unterstützen Sie die Forschung im Kampf gegen Corona. 16. März 2020;.
  111. a b Weitereentwickelte Impfstoffe gegen Coronaviren: Die aktuellen Forschungsprojekte. In: Verband der forschenden Pharma-Unternehmen. Abgerufen am 26. November 2021.
  112. Pfizer und BioNTech geben vor dem Hintergrund der Delta-Variante ein Update zu ihrem Auffrischungsimpfungen-Programm bekannt. In: BioNTech. Abgerufen am 26. November 2021.
  113. Gefährlichere Coronavarianten: Vorerst keine Updates für die Covid-Impfstoffe. In: mdr Wissen. 22. Oktober 2021, abgerufen am 26. November 2021.
  114. Emily Waltz: COVID vaccine makers brace for a variant worse than Delta. In: Nature. Band 598, Nr. 7882, 20. Oktober 2021, S. 552–553, doi:10.1038/d41586-021-02854-3 (nature.com [abgerufen am 26. November 2021]).
  115. EMA-Website: COVID-19-Impfstoffe: Entwicklung, Bewertung, Zulassung und Überwachung, abgerufen am 21. August 2022.
  116. Corona: Wann gibt es einen Impfstoff? In: quarks.de. 17. Dezember 2020, abgerufen am 20. Dezember 2020.
  117. Robert Schultz-Heienbrok: Arzneimittel verstehen: Die Kunst, aus Risiken Nutzen zu machen. Springer, 2019, S. 1 ff.
  118. a b c H. Blasius: Wirrwarr um Notfall- und „ordentliche“ Zulassungen. DAZ.online, 21. Dezember 2020.
  119. Swissmedic erteilt Zulassung für den ersten Covid-19-Impfstoff in der Schweiz. swissmedic, 19. Dezember 2010.
  120. Conditional marketing authorisation – Use during COVID-19 pandemic. EMA, abgerufen am 5. Februar 2021.
  121. Russische Forscher veröffentlichen erstmals wissenschaftliche Daten zu Sputnik-V-Impfstoff. In: /www.aerzteblatt.de. 4. September 2020, abgerufen am 18. Februar 2021.
  122. Kein Impfstoff für Indien: Pfizer zieht Zulassungsantrag zurück. apotheke adhoc, 5. Februar 2021.
  123. J. H. Kim, F. Marks, J. D. Clemens: Looking beyond COVID-19 vaccine phase 3 trials. Nature Medicine, Januar 2021.
  124. Regulation and Prequalification, WHO
  125. a b Stephan Laack: Corona in Russland – Putin kündigt Massenimpfungen an. In: tagesschau.de. 2. Dezember 2020, abgerufen am 1. Januar 2021.
  126. COVID-19 Vaccine Market Dashboard. In: unicef.org. UNICEF, abgerufen am 27. November 2022 (englisch).
  127. Sinopharm: WHO-Notfallzulassung für chinesischen Corona-Impfstoff. In: Die Welt. 7. Mai 2021 (welt.de [abgerufen am 7. Mai 2021]).
  128. Status of COVID-19 Vaccines within WHO EUL/PQ evaluation process. In: who.int. 20. Dezember 2021, abgerufen am 21. Dezember 2021.
  129. Paul-Ehrlich-Institut – Homepage – Was ist eine bedingte Zulassung? Abgerufen am 23. November 2021.
  130. COVID-19: Europäische Arzneimittelagentur gibt Empfehlungen zu Auffrischungsimpfungen mit Impfstoffen von BioNTech und Moderna. In: Website: EU-Kommission-Pressemitteilungen. EU-Kommission (Vertretung in Deutschland), 5. Oktober 2021, abgerufen am 26. Oktober 2021.
  131. Jon Cohen: Science’s Breakthrough of the Year 2020: shots of hope in a pandemic-ravaged world. In: sciencemag.org. 17. Dezember 2020, abgerufen am 18. Dezember 2020 (englisch).
  132. COVID-19 vaccines: authorised. Abgerufen am 20. November 2022 (englisch).
  133. Vaccines In Use. 26. August 2021, abgerufen am 26. August 2021 (englisch).
  134. Gelbe Liste Online: Vergleich Corona-Impfstoffe | Gelbe Liste. Abgerufen am 22. März 2021.
  135. COVID-19 vaccine candidates. (PDF) In: Vizient. 1. März 2021, abgerufen am 22. März 2020 (englisch).
  136. a b c d e f John Hodgson: The pandemic pipeline. In: Nature Biotechnology. Band 38, 20. März 2020, S. 523–532, doi:10.1038/d41587-020-00005-z, PMID 32203293 (englisch, nature.com [abgerufen am 23. März 2020]).
  137. a b c d e f COVID-19-Impfstoffe. 16. September 2021, abgerufen am 19. September 2021.
  138. Study to Describe the Safety, Tolerability, Immunogenicity, and Potential Efficacy of RNA Vaccine Candidates Against COVID-19 in Healthy Adults – Tabular View – ClinicalTrials.gov. Abgerufen am 2. August 2020 (englisch).
  139. A Study to Evaluate Efficacy, Safety, and Immunogenicity of mRNA-1273 Vaccine in Adults Aged 18 Years and Older to Prevent COVID-19. In: clinicaltrials.gov. Abgerufen am 2. August 2020.
  140. Covid-19: DCGI grants Emergency Use Authorization to India’s 1st mRNA vaccine. 30. Juni 2022, abgerufen am 14. September 2022 (englisch).
  141. A Chinese mRNA COVID vaccine is approved for the first time - in Indonesia. 30. September 2022, abgerufen am 22. Oktober 2022 (englisch).
  142. Stemirna receives Emergency Use Authorization from Laos for its proprietary mRNA vaccine. 3. Februar 2023, abgerufen am 20. Januar 2024 (englisch).
  143. China OKs its first mRNA vaccine, from drugmaker CSPC. 22. März 2023, abgerufen am 27. August 2023 (englisch).
  144. Daichirona for Intramuscular Injection (Monovalent: Original Strain), mRNA COVID-19 Vaccine, Approved for Manufacturing and Marketing as Booster Vaccination in Japan. 2. August 2023, abgerufen am 19. November 2023 (englisch).
  145. Wenn sich der Impfstoff selbst vermehrt. 18. Dezember 2023, abgerufen am 20. Januar 2024.
  146. First self-amplifying mRNA vaccine approved. 17. Januar 2024, abgerufen am 20. Januar 2024 (englisch).
  147. First Self-Amplifying mRNA COVID-19 Vaccine Approved in Japan. 17. Dezember 2023, abgerufen am 20. Januar 2024 (englisch).
  148. KostaiveTM, Self-Amplifying mRNA Vaccine against COVID-19, Approved for Manufacturing and Marketing from MHLW in Japan. 28. November 2023, abgerufen am 28. Februar 2024 (englisch).
  149. India gives emergency approval for world’s first COVID-19 DNA vaccine. 20. August 2021, abgerufen am 22. August 2021 (englisch).
  150. a b c Smriti Mallapaty: India’s DNA Covid Vaccine is a first – more are coming. Nature 597 (9. September 2021), S. 161.
  151. ZyCov-D COVID-19 Vaccine, Precision Vaccinations, 8. Juni 2021. Abgerufen am 9. Juni 2021.
  152. EMA: Produktinformation: Vaxzevria (COVID-19 Vaccine AstraZeneca). (PDF) Europäische Arzneimittel-Agentur, abgerufen am 6. Mai 2021.
  153. A Study of a Candidate COVID-19 Vaccine (COV001) – Full Text View. In: clinicaltrials.gov. 27. März 2020, abgerufen am 15. April 2020.
  154. Phase III Double-blind, Placebo-controlled Study of AZD1222 for the Prevention of COVID-19 in Adults – Full Text View – ClinicalTrials.gov. Abgerufen am 2. September 2020 (englisch).
  155. A Study of Ad26.COV2.S for the Prevention of SARS-CoV-2-Mediated COVID-19 in Adult Participants (ENSEMBLE). In: clinicaltrials.gov. Abgerufen am 28. August 2020.
  156. ad26cov2-s, precisionvaccinations. Abgerufen am 10. Dezember 2020.
  157. J. Sadoff, M. Le Gars u. a.: Interim Results of a Phase 1-2a Trial of Ad26.COV2.S Covid-19 Vaccine. In: The New England Journal of Medicine. Band 384, Nummer 19, 05 2021, S. 1824–1835, doi:10.1056/NEJMoa2034201, PMID 33440088, PMC 7821985 (freier Volltext).
  158. An Open Study of the Safety, Tolerability and Immunogenicity of “Gam-COVID-Vac Lyo” Vaccine Against COVID-19. In: clinicaltrials.gov. Abgerufen am 3. September 2020.
  159. An Open Study of the Safety, Tolerability and Immunogenicity of the Drug “Gam-COVID-Vac” Vaccine Against COVID-19. In: clinicaltrials.gov. Abgerufen am 3. September 2020.
  160. Clinical Trial of Efficacy, Safety, and Immunogenicity of Gam-COVID-Vac Vaccine Against COVID-19 (RESIST). In: clinicaltrials.gov. Abgerufen am 28. August 2020.
  161. CanSino’s COVID-19 vaccine approved for military use in China. 29. Juni 2020, archiviert vom Original am 7. März 2021; abgerufen am 3. März 2021.
  162. Mexico approves Chinese COVID vaccines CanSino and CoronaVac. 10. Februar 2021, abgerufen am 3. März 2021.
  163. Pakistan approves Chinese CanSinoBIO COVID vaccine for emergency use. 12. Februar 2021, abgerufen am 3. März 2021.
  164. China’s CanSino Biologics COVID-19 vaccine receives emergency use approval in Hungary. 22. März 2021, abgerufen am 15. April 2021.
  165. ISP aprueba uso de emergencia e importación de la vacuna Cansino para combatir COVID-19. 7. April 2021, abgerufen am 15. April 2021.
  166. Argentina issues emergency approval to China’s single-dose Cansino COVID-19 vaccine. 11. Juni 2021, abgerufen am 2. November 2021.
  167. Ecuador authorizes use of China’s CanSino vaccine against COVID-19. 16. Juni 2021, abgerufen am 2. November 2021.
  168. Malaysia grants conditional approval for CanSino, J&J COVID-19 vaccines. 15. Juni 2021, abgerufen am 23. November 2021.
  169. Indonesia approves J&J, Cansino COVID-19 vaccines for emergency use. 7. September 2021, abgerufen am 23. November 2021.
  170. Phase III Trial of A COVID-19 Vaccine in Adults 18 Years of Age and Older. In: clinicaltrials.gov. Abgerufen am 28. August 2020.
  171. Russian Health Ministry registers Salnavac nasal Covid-19 vaccine. 5. Juli 2022, abgerufen am 15. September 2022.
  172. China hat inhalativen Covid-19-Impfstoff zugelassen. 14. September 2022, abgerufen am 15. September 2022.
  173. CanSino Biologics : CanSinoBIO’s Convidecia Air Approved for Emergency Use in Morocco. 10. November 2022, abgerufen am 20. November 2022.
  174. India grants approval for Bharat Biotech’s intranasal Covid-19 vaccine. 7. September 2022, abgerufen am 14. September 2022.
  175. Intranasaler Corona-Impfstoff in Indien zugelassen. 13. September 2022, abgerufen am 14. September 2022.
  176. Sinopharm vaccine approved to treat children, teenagers. 20. Juli 2021, abgerufen am 29. Juli 2021.
  177. A Phase III clinical trial for inactivated novel coronavirus pneumonia (COVID-19) vaccine (Vero cells). In: chictr.org. Abgerufen am 7. August 2020.
  178. a b Xiaoming Yang: Effect of 2 Inactivated SARS-CoV-2 Vaccines on Symptomatic COVID-19 Infection in Adults – A Randomized Clinical Trial. JAMA, 26. Mai 2021, doi:10.1001/jama.2021.8565.
  179. China to offer Covid-19 vaccine to children as young as three. 8. Juni 2021, abgerufen am 29. Juli 2021.
  180. Clinical Trial of Efficacy and Safety of Sinovac’s Adsorbed COVID-19 (Inactivated) Vaccine in Healthcare Professionals (PROFISCOV). In: clinicaltrials.gov. Abgerufen am 2. August 2020.
  181. Serhat Ünal/ The CoronaVac Study Group: Efficacy and safety of an inactivated whole-virion SARS-CoV-2 vaccine (CoronaVac): interim results of a double-blind, randomised, placebo-controlled, phase 3 trial in Turkey. Lancet, 8. Juli 2021, doi:10.1016/S0140-6736(21)01429-X
  182. a b Corbevax gets nod, paves way to lower age bar for Covid jab. 15. Februar 2022, abgerufen am 18. Februar 2022.
  183. a b DCGI grants approval to Corbevax for kids aged 5-12, Covaxin for 6-12 age group. 26. April 2022, abgerufen am 17. Mai 2022.
  184. An Efficacy and Safety Clinical Trial of an Investigational COVID-19 Vaccine (BBV152) in Adult Volunteers – Full Text View – ClinicalTrials.gov. Abgerufen am 4. Januar 2021 (englisch).
  185. Kazakhstan’s QazCovid-In Vaccine Receives Temporary Registration for Nine Months. 14. Januar 2021, abgerufen am 2. November 2021 (englisch).
  186. The COVID-19 Vaccine QAZVAC is Firstly Registrated Abroad. 18. August 2021, abgerufen am 2. November 2021 (englisch).
  187. China approves two more domestic COVID-19 vaccines for public use. 25. Februar 2021, abgerufen am 26. Juli 2021.
  188. FDA grants EUA to COVID-19 vaccine Sinopharm manufactured by Wuhan affiliate. 25. August 2021, abgerufen am 28. August 2021.
  189. Kangtai Biological’s COVID-19 vaccine gets emergency use approval in China. 14. Mai 2021, abgerufen am 24. August 2021 (englisch).
  190. Wie weit sind die Corona-Impfstoffe? 9. Dezember 2021, abgerufen am 17. Mai 2022.
  191. A Study to Evaluate the Efficacy, Safety and Immunogenicity of SARS-CoV-2 Vaccine (Vero Cells), Inactivated in Healthy Adults Aged 18 Years and Older (COVID-19). 21. April 2021, abgerufen am 21. August 2021 (englisch).
  192. China approves 7th self-developed COVID-19 vaccine, can cross-neutralize variants. 9. Juni 2021, abgerufen am 10. September 2021 (englisch).
  193. Iran issues license on its coronavirus vaccine. 14. Juni 2021, abgerufen am 22. August 2021 (englisch).
  194. Iran Authorizes Emergency Use of Third Homegrown Vaccine. 9. September 2021, abgerufen am 10. September 2021 (englisch).
  195. Domestic COVID-19 jab Turkovac begins Phase 3 trials in Turkey. 22. Juni 2021, abgerufen am 27. Dezember 2021 (englisch).
  196. Turkey’s domestic COVID-19 vaccine Turkovac approved for emergency use. 22. Dezember 2021, abgerufen am 27. Dezember 2021 (englisch).
  197. COVID-19 vaccines: authorised. In: ema.europa.eu. 29. Juni 2022, archiviert vom Original am 29. Juni 2022; abgerufen am 29. Juni 2022 (englisch).
  198. Dose Finding Study to Evaluate Safety, Tolerability and Immunogenicity of an Inactiviated Adjuvanted Sars-Cov-2 Virus Vaccine Candidate Against Covid-19 in Healthy Adults. In: Clinical Trials. Abgerufen am 7. April 2021 (englisch).
  199. BIOCOM AG: Totimpfstoff von Valneva mit Erfolg in Phase III. Abgerufen am 14. März 2022.
  200. Fünfter Coronavirus-Impfstoff EpiVacCorona-N in Russland zugelassen. 27. August 2021, abgerufen am 21. September 2022.
  201. Fiona Godlee: Covid 19: Hope is being eclipsed by deep frustration. In: BMJ. , S. n171, doi:10.1136/bmj.n171.
  202. Kuba beginnt mit Corona-Impfung von Kindern ab zwei Jahren. 7. September 2021, abgerufen am 10. September 2021.
  203. Kuba setzt auf eigene Corona-Vakzine. In: Deutsche Welle. 21. August 2021, abgerufen am 21. August 2021.
  204. Ministro de Salud: “El autorizo de uso en emergencias otorgado por el CECMED, a las vacunas Soberana 02 y Soberana Plus, es orgullo y compromiso para todos”. Ministerio de Salud Pública de Cuba, 21. August 2021, abgerufen am 21. August 2021 (spanisch).
  205. SOBERANA 02 Registro Público Cubano de Ensayos Clínicos, 24. Januar 2021, Cuban Registry of Clinical Trials
  206. Cuban-developed vaccine enters Phase III trial, ABS-CBN, 5. März 2021.
  207. Proteinbasierter Impfstoff: Antrag auf EU-Zulassung gestellt. Abgerufen am 23. November 2021.
  208. Evaluation of the Safety and Immunogenicity of a SARS-CoV-2 rS (COVID-19) Nanoparticle Vaccine With/Without Matrix-M Adjuvant – Full Text View – ClinicalTrials.gov. Abgerufen am 15. Mai 2020 (englisch).
  209. A Study Looking at the Effectiveness and Safety of a COVID-19 Vaccine in South African Adults. Abgerufen am 4. September 2020 (englisch).
  210. A Phase 3, Randomised, Observer-Blinded, Placebo-Controlled Trial to Evaluate the Efficacy and Safety of a SARS-CoV-2 Recombinant Spike Protein Nanoparticle Vaccine (SARS-CoV-2 rS) with Matrix-M1™ Adjuvant in Adult Participants 18-84 Years of Age in the United Kingdom. Abgerufen am 30. September 2020 (englisch).
  211. Medicago Covifenz COVID-19 vaccine. 24. Februar 2022, abgerufen am 24. Februar 2022.
  212. Regulatory Decision Summary – Covifenz – Health Canada. 30. März 2023, abgerufen am 5. September 2023 (englisch).
  213. GSK, Medicago launch phase 2/3 clinical trials of plant-derived COVID-19 vaccine. 12. November 2020, abgerufen am 8. Januar 2021 (englisch).
  214. Uzbekistan approves Chinese-developed COVID-19 vaccine. 1. März 2021, abgerufen am 5. März 2021.
  215. China IMCAS’s COVID-19 vaccine obtained emergency use approval in China. 15. März 2021, abgerufen am 24. August 2021.
  216. Indonesia approves emergency use of China’s Zifivax COVID-19 vaccine. 7. Oktober 2021, abgerufen am 15. Januar 2022.
  217. Clinical Study of Recombinant Novel Coronavirus Vaccine. Abgerufen am 4. September 2020 (englisch).
  218. A Phase III Clinical Trial to Determine the Safety and Efficacy of ZF2001 for Prevention of COVID-19 – Full Text View – ClinicalTrials.gov. Abgerufen am 4. Januar 2021 (englisch).
  219. A Study to Evaluate MVC-COV1901 Vaccine Against COVID-19 in Adult (COVID-19). 5. Januar 2021, abgerufen am 21. August 2021 (englisch).
  220. A Study to Evaluate MVC-COV1901 Vaccine Against COVID-19 in Elderly Adults. 30. März 2021, abgerufen am 21. August 2021 (englisch).
  221. Medigen begins making its vaccine. 20. Mai 2021, abgerufen am 21. August 2021 (englisch).
  222. Iran issues emergency permit for new local Covid-19 vaccine. 6. Oktober 2021, abgerufen am 14. Oktober 2021 (englisch).
  223. India Clears 2 New Vaccines And Merck’s Covid Pill: 10 Points. 28. Dezember 2021, abgerufen am 28. Dezember 2021 (englisch).
  224. Botswana Approves Texas-Made COVID Vaccine, Manufacturing Plant. 29. März 2022, abgerufen am 17. Mai 2022 (englisch).
  225. 2 new vaccines in India: Gap between 2 doses less than 1 month. Corbevax & Covovax schedules and other details. 28. Dezember 2021, abgerufen am 30. Dezember 2021 (englisch).
  226. Sinopharm protein-based booster stronger against Omicron than earlier shot -study. 7. Januar 2022, abgerufen am 18. Januar 2022 (englisch).
  227. Ministry of Health approves emergency use of Sinopharm CNBG’s new recombinant protein vaccine. 28. Dezember 2021, abgerufen am 18. Januar 2022 (englisch).
  228. “Noora” vaccine receives emergency use license. 1. März 2022, abgerufen am 4. März 2022 (englisch).
  229. COVID-19 vaccine with IPD nanoparticles wins full approval abroad. 29. Juni 2022, abgerufen am 20. September 2022 (englisch).
  230. SK bioscience and GSK Announce Biologics License Application Approval of SKYCovione in Republic of Korea. 29. Juni 2022, abgerufen am 20. September 2022 (englisch).
  231. Song JY, Choi WS, Heo JY, et al.: Safety and immunogenicity of a SARS-CoV-2 recombinant protein nanoparticle vaccine (GBP510) adjuvanted with AS03: A randomised, placebo-controlled, observer-blinded phase 1/2 trial. In: eClinicalMedicine. Band 51, 22. Juli 2022, S. 101569, doi:10.1016/j.eclinm.2022.101569, PMID 35879941, PMC 9304916 (freier Volltext).
  232. IVI and SK bioscience Complete Recruitment for Phase III Clinical Trial of SKBS’ COVID-19 Vaccine. In: International Vaccine Institute. 19. Januar 2022, abgerufen am 22. März 2022 (englisch).
  233. Südkorea bestellt neuen Impfstoff bei lokalem Unternehmen. 22. März 2022, abgerufen am 22. März 2022.
  234. Livzon Pharma’s COVID vaccine gets approval as booster in China. 2. September 2022, abgerufen am 14. September 2022 (englisch).
  235. Houston doctors get approval for low-cost COVID vaccine abroad. 6. Oktober 2022, abgerufen am 22. Oktober 2022 (englisch).
  236. Texas-Developed Patent-Free COVID-19 Vaccine Technology Receives Emergency Use Authorization In Indonesia. Abgerufen am 22. Oktober 2022 (englisch).
  237. VidPrevtyn Beta. 11. November 2022, abgerufen am 13. November 2022 (englisch).
  238. Sanofi Pasteur COVID-19 vaccine authorised by MHRA. 21. Dezember 2022, abgerufen am 29. August 2023 (englisch).
  239. Study of Recombinant Protein Vaccine Formulations Against COVID-19 in Healthy Adults 18 Years of Age and Older. Abgerufen am 4. September 2020 (englisch).
  240. Sanofi and GSK receive approval for Phase 3 efficacy trial of their COVID-19 vaccine candidate in India (Memento vom 26. Juli 2021 im Internet Archive), 8. Juli 2021. Abgerufen am 21. Juli 2021.
  241. Clover Provides Updates on COVID-19 Vaccine Commercial Launch and Strategic Priorities in 2023. 16. Januar 2023, abgerufen am 20. Januar 2024.
  242. Two CDHT-made COVID-19 Vaccine Products Approved for Marketing. 13. Januar 2023, abgerufen am 20. Januar 2024.
  243. Bimervax. 31. März 2023, abgerufen am 7. August 2023 (englisch).
  244. Bimervax COVID-19 vaccine authorised by MHRA. 1. August 2023, abgerufen am 29. August 2023 (englisch).
  245. China erteilt dem weltweit ersten Impfstoff gegen XBB-Nachfahren von SARS-CoV-2 die Notfallzulassung. 9. Juni 2023, abgerufen am 29. August 2023.
  246. Notfallverwendung von Abdala für Kinder zwischen zwei und 11 Jahren zugelassen. 28. Oktober 2021, abgerufen am 6. November 2021.
  247. Phase III clinical trials for Abdala vaccine candidate authorized, oncubanews.com, 19. März 2021.
  248. ABDALA Clinical Study – Phase III, Registro Público Cubano de Ensayos Clínicos, 19. März 2021.
  249. Corona-Impfstoff made in Cuba. In: Deutsche Welle (DW) – Online. Hrsg.:Deutsche Welle (Anstalt des öffentlichen Rechts), 18. August 2020, abgerufen am 1. Dezember 2020.
  250. a b Eva Dou, Isabelle Khurshudyan: China and Russia are ahead in the global coronavirus vaccine race, bending long-standing rules as they go. In: washingtonpost.com, 18. September 2020.
  251. Yanjun Zhang, Gang Zeng, Hongxing Pan, Changgui Li, Yaling Hu, Kai Chu et al.: Safety, tolerability, and immunogenicity of an inactivated SARS-CoV-2 vaccine in healthy adults aged 18–59 years: a randomised, double-blind, placebo-controlled, phase 1/2 clinical trial. The Lancet, 17. November 2020, abgerufen am 26. April 2021.
  252. Tuvan Gumrukcu, Ali Kucukgocmen: Turkey says China’s Sinovac COVID vaccine 91.25 % effective in late trials. In: reuters.com. 24. Dezember 2020, abgerufen am 13. Januar 2021.
  253. Erdoğan kündigt Impfstart an. In: sueddeutsche.de. 12. Januar 2020, abgerufen am 13. Januar 2021.
  254. Chinesische Sinovac-Vakzine in Indonesien zugelassen. In: n-tv.de. 11. Januar 2021, abgerufen am 11. Januar 2021.
  255. n-tv.de
  256. faz.net
  257. Krishna Mohan Vadrevu: Safety and immunogenicity of an inactivated SARS-CoV-2 vaccine, BBV152: interim results from a double-blind, randomised, multicentre, phase 2 trial, and 3-month follow-up of a double-blind, randomised phase 1 trial. Lancet Infectious Diseases, 8. März 2021, 10.1016/S1473-3099(21)00070-0.
  258. Factsheet der Zulassungsstudie auf clinicaltrials.gov; zuletzt abgerufen am 19. April 2021.
  259. India approves COVID-19 vaccines Covishield and Covaxin for emergency use. The Hindu, 3. Januar 2021; zuletzt abgerufen am 19. April 2021.
  260. WHO issues emergency use listing for eighth COVID-19 vaccine. WHO-Pressemitteilung, 3. November 2021, abgerufen am 5. November 2021 (englisch).
  261. COVID-19 Vaccine (inactivated, adjuvanted) Valneva. In: ema.europa.eu. 23. Juni 2022, abgerufen am 28. Juni 2022.
  262. a b Forum Genforschung der Akademie der Naturwissenschaften Schweiz: Vektorimpfstoffe gegen das Coronavirus. Abgerufen am 5. August 2021.
  263. Meredith Wadman: Novavax vaccine delivers 89% efficacy against COVID-19 in U.K.—but is less potent in South Africa. In: Science. 2021, doi:10.1126/science.abg8101.
  264. EMA: EMA recommends Nuvaxovid for authorisation in the EU. Abgerufen am 20. Dezember 2021 (englisch).
  265. Europäische Kommission erteilt Zulassung für fünften sicheren und wirksamen Impfstoff gegen COVID-19. In: ec.europa.eu. Europäische Kommission, 20. Dezember 2021, abgerufen am 20. Dezember 2021.
  266. Nuvaxovid. In: ec.europa.eu. 20. Dezember 2021, abgerufen am 20. Dezember 2021 (englisch).
  267. AstraZeneca’s COVID-19 vaccine authorised for emergency supply in the UK. In: astrazeneca.com. AstraZeneca, 30. Dezember 2020, abgerufen am 5. Januar 2021 (englisch).
  268. Non-clinical testing for inadvertent germline transmission of gene transfer vectors. In: Europäische Arzneimittel-Agentur. Abgerufen am 19. Februar 2021.
  269. a b Adrian Kemp: AZD1222 vaccine met primary efficacy endpoint in preventing COVID-19. In: astrazeneca.com. 23. November 2020, abgerufen am 5. Januar 2021 (englisch).
  270. AstraZeneca muss Corona-Impfstoff erneut testen. Offene Fragen zur Wirksamkeit. In: t-online.de. 26. November 2020, abgerufen am 12. Dezember 2020: „Wie wirksam ist der an der Universität Oxford entwickelte Impfstoff wirklich? Offenbar gab es Unstimmigkeit bei der Errechnung des Wirkungsgrades. Deshalb muss jetzt weiter getestet werden.“
  271. JCVI issues advice on the AstraZeneca COVID-19 vaccine. In: gov.uk. Public Health England, 30. Dezember 2020, abgerufen am 1. Januar 2021 (englisch).
  272. Oxford University/AstraZeneca vaccine authorised by UK medicines regulator. In: gov.uk. Department of Health and Social Care, 30. Dezember 2020, abgerufen am 30. Dezember 2020 (englisch).
  273. Serum Institute of India obtains emergency use authorisation in India for AstraZeneca’s COVID-19 vaccine. In: astrazeneca.com. AstraZeneca, 6. Januar 2021, abgerufen am 7. Januar 2021 (englisch).
  274. Europäische Kommission erteilt dritte Zulassung für sicheren und wirksamen Impfstoff gegen COVID-19. In: ec.europa.eu. Europäische Kommission, 29. Januar 2021, abgerufen am 29. Januar 2021.
  275. Exclusive: AstraZeneca to cut EU’s COVID vaccine deliveries by 60 % in first quarter – EU source. In: reuters.com. 22. Januar 2021, abgerufen am 22. Januar 2021 (englisch).
  276. tagesschau.de vom 7. Februar 2021
  277. handelsblatt.com vom 8. Februar 2021
  278. Werner Bartens, Bernd Dörries: Experten kritisieren Südafrikas Stopp der Astra-Zeneca-Impfung. In: Süddeutsche Zeitung. 8. Februar 2021, abgerufen am 10. Februar 2021.
  279. COVID-19 Vaccine AstraZeneca: PRAC investigating cases of thromboembolic events – vaccine’s benefits currently still outweigh risks (Update). Europäische Arzneimittel-Agentur (EMA), 11. März 2021, abgerufen am 22. Dezember 2021 (englisch, deutschsprachige Bearbeitung unterstützt vom Browser-Plug-in von Google Chrome).
  280. Mögliche Verzögerungen und deutliche Kritik. In: tagesschau.de. 16. März 2021, abgerufen am 16. März 2021.
  281. FAQ – Temporäre Aussetzung COVID-19-Impfstoff AstraZeneca. (PDF) Paul-Ehrlich-Institut, 16. März 2021, abgerufen am 16. März 2021.
  282. tagesschau.de: Gesundheitsminister: AstraZeneca nur noch für Menschen ab 60. Abgerufen am 1. April 2021.
  283. Avoxa-Mediengruppe Deutscher Apotheker GmbH: Neue STIKO-Empfehlung: Keine Zweitimpfung mit Astra-Zeneca – neuer Impfabstand bei mRNA. Abgerufen am 2. April 2021.
  284. tagesschau.de: AstraZeneca: EMA rät vorerst nicht zu Einschränkungen. Abgerufen am 1. April 2021.
  285. Seltene Hirnvenenthrombosen: Astrazeneca – das ist über Risiken bekannt. In: Stuttgarter Nachrichten. 30. März 2021, abgerufen am 30. März 2021.
  286. FDA Issues Emergency Use Authorization for Third COVID-19 Vaccine. In: fda.gov. Food and Drug Administration, 27. Februar 2021, abgerufen am 28. Februar 2021 (englisch).
  287. a b EPAR – COVID-19 Vaccine Janssen. In: EMA. 11. März 2021, abgerufen am 11. März 2021 (englisch).
  288. Ständige Impfkommision des RKI: Pressemitteilung der STIKO zur COVID-19-Auffrischimpfung und zur Optimierung der Janssen-Grundimmunisierung (7.10.2021). Abgerufen am 15. Oktober 2021.
  289. Fabian Schmidt: Verwirrung um Wirksamkeit chinesischer Impfstoffe. Deutsche Welle, 12. April 2021.
  290. Chinese COVID-19 vaccine Ad5-Ncov shows high antibody levels at Russian trial -Ifax. In: reuters.com. 14. Januar 2021, abgerufen am 14. Januar 2021.
  291. WHO validates 11th vaccine for COVID-19, 19. Mai 2022; abgerufen am 31. Juli 2022
  292. Interim recommendations for use of the Cansino Ad5-nCoV-S vaccine (Convidecia ®) against COVID-19 (PDF-Dokument), von who.int 19. Mai 2022; abgerufen am 31. Juli 2022
  293. dw.com
  294. Julia Köppe: Verdacht auf Manipulation bei Russlands Corona-Impfstoff „Sputnik V“. In: spiegel.de. 15. September 2020, abgerufen am 19. September 2020.
  295. Denis Y. Logunov, Inna V. Dolzhikova, Dmitry V. Shcheblyakov, Amir I. Tukhvatulin, Olga V. Zubkova: Safety and efficacy of an rAd26 and rAd5 vector-based heterologous prime-boost COVID-19 vaccine: an interim analysis of a randomised controlled phase 3 trial in Russia. In: The Lancet. Band 397, Nr. 10275, Februar 2021, ISSN 0140-6736, S. 671–681, doi:10.1016/s0140-6736(21)00234-8, PMID 33545094, PMC 7852454 (freier Volltext).
  296. EMA starts rolling review of the Sputnik V COVID-19 vaccine. 4. März 2021, abgerufen am 4. März 2021.
  297. Sputnik V: EU-Zulassung für russischen Impfstoff ausgesetzt. In: merkur.de. 17. März 2022, abgerufen am 28. Februar 2024.
  298. COVID: China is developing its own mRNA vaccine – and it’s showing early promise, vom 15. Februar 2022, abgerufen am 24. April 2022
  299. Celine Müller: EMA empfiehlt die Zulassung des ersten Corona-Impfstoffs in der EU. 21. Dezember 2020, abgerufen am 21. Dezember 2020.
  300. T. Dingermann: Wer steht wo bei der Entwicklung? www.pharmazeutische-zeitung.de, 6. Juli 2020.
  301. Sie sind BioNTech und haben den Impfstoff entwickelt: Uğur Şahin (55) und Özlem Türeci (53) euronews.com, 11. November 2020.
  302. WHO Drug Information, Vol. 34, No. 3, 2020, abgerufen am 9. Januar 2021.
  303. Epidemiologisches Bulletin. (PDF) Robert Koch-Institut, 27. Januar 2021, abgerufen am 27. Februar 2021.
  304. Pfizer und BioNTech schließen Phase-3-Studie erfolgreich ab: Impfstoffkandidat gegen COVID-19 erreicht alle primären Endpunkte. 18. November 2020, abgerufen am 29. Dezember 2020.
  305. a b Fernando P. Polack, Stephen J. Thomas, Nicholas Kitchin, Judith Absalon, Alejandra Gurtman: Safety and Efficacy of the BNT162b2 mRNA Covid-19 Vaccine. In: New England Journal of Medicine. 10. Dezember 2020, ISSN 0028-4793, doi:10.1056/NEJMoa2034577, PMID 33301246, PMC 7745181 (freier Volltext).
  306. BioNTech bedankt sich bei Mitarbeitern und Partnern für die Unterstützung bei der historischen Impfstoff-Entwicklung. In: investors.biontech.de. Biontech, 31. Dezember 2020, abgerufen am 1. Januar 2021.
  307. EU-Kommission erteilt Zulassung für erste Corona-Impfung. In: bundesregierung.de. Abgerufen am 22. Dezember 2020.
  308. Swissmedic erteilt Zulassung für den ersten Covid-19-Impfstoff in der Schweiz. Swissmedic, 19. Dezember 2020, abgerufen am 19. Dezember 2020.
  309. Union Register of medicinal products for human use. In: ec.europa.eu. Europäische Kommission, 21. Dezember 2020, abgerufen am 22. Dezember 2020 (englisch).
  310. EMA recommends first COVID-19 vaccine for authorisation in the EU. Europäische Arneizmittel-Agentur, 21. Dezember 2020, abgerufen am 21. Dezember 2020 (englisch).
  311. WHO issues its first emergency use validation for a COVID-19 vaccine and emphasizes need for equitable global access. In: who.int. Weltgesundheitsorganisation, 31. Dezember 2020, abgerufen am 1. Januar 2021 (englisch).
  312. COVID-19 mRNA Vaccine (nucleoside modified) COMIRNATY®. (PDF) In: who.int. Weltgesundheitsorganisation, 31. Dezember 2020, abgerufen am 1. Januar 2021 (englisch).
  313. a b Peer-reviewed report on Moderna COVID-19 vaccine publishes. In: nih.gov. National Institutes of Health, 30. Dezember 2020, abgerufen am 3. Januar 2021 (englisch).
  314. Julie Steenhuysen, Kate Kelland: With Wuhan virus genetic code in hand, scientists begin work on a vaccine. Reuters, 24. Januar 2020, archiviert vom Original am 25. Januar 2020; abgerufen am 25. Januar 2020.
  315. Moderna’s COVID-19 Vaccine Candidate Meets its Primary Efficacy Endpoint in the First Interim Analysis of the Phase 3 COVE Study. In: investors.modernatx.com. Moderna, 16. November 2020, archiviert vom Original am 2. Januar 2021; abgerufen am 3. Januar 2021 (englisch).
  316. Lindsey R. Baden et al.: Efficacy and Safety of the mRNA-1273 SARS-CoV-2 Vaccine. In: The New England Journal of Medicine. 30. Dezember 2020, doi:10.1056/NEJMoa2035389 (online).
  317. Moderna COVID-19 Vaccine. FDA, 18. Dezember 2020.
  318. European Commission Authorizes COVID-19 Vaccine Moderna in Europe. In: investors.modernatx.com. Moderna, 6. Januar 2021, archiviert vom Original am 6. Januar 2021; abgerufen am 6. Januar 2021 (englisch).
  319. a b Europäische Kommission erteilt zweite Zulassung für sicheren und wirksamen Impfstoff gegen COVID-19. In: ec.europa.eu. Europäische Kommission, 6. Januar 2021, abgerufen am 6. Januar 2021.
  320. Grünes Licht für Moderna-Impfstoff. SRF News, 12. Januar 2021.
  321. a b Moderna Provides COVID-19 Vaccine Supply Update. In: investors.modernatx.com. Moderna, 4. Januar 2021, archiviert vom Original am 4. Januar 2021; abgerufen am 4. Januar 2021 (englisch).
  322. Moderna Announces FDA Authorization of Moderna COVID-19 Vaccine in U.S. In: modernatx.com. Moderna, 18. Dezember 2020, archiviert vom Original am 19. Dezember 2020; abgerufen am 19. Dezember 2020 (englisch).
  323. Matthias Benz, Dominik Feldges: Impfstart verschlafen? Was Verzögerungen die Schweiz kosten und warum es trotzdem Geduld braucht. In: nzz.ch. 9. Januar 2021, abgerufen am 10. Januar 2021.
  324. Moderna-Impfstoff: Erste Lieferung in Deutschland angekommen. In: sueddeutsche.de. 11. Januar 2021, abgerufen am 11. Januar 2021.
  325. Zweiter Covid-19-Impfstoff für die Schweiz zugelassen. Bundesamt für Gesundheit, 12. Januar 2021.
  326. First adapted COVID-19 booster vaccines recommended for approval in the EU. In: EMA-Website (News 01/09/2022). Hrsg.: Europäische Arzneimittel-Agentur (EMA), 1. September 2022, abgerufen am 3. September 2022 (englisch).
  327. Die Europäische Kommission und der der Ausschuss für Humanarzneimittel bei der EMA erteilen ein positives Votum, für die an die Omikron-Virusvariante angepassten mRNA-Impfstoffe von BioNTech/Pfizer und Moderna für Auffrischimpfungen. In: PEI-Website. Paul Ehrlich Institut (PEI), 2. September 2022, abgerufen am 4. September 2022.
  328. First adapted COVID-19 booster vaccines recommended for approval in the EU. In: EMA-Website (News 01/09/2022). Hrsg.: Europäische Arzneimittel-Agentur (EMA), 1. September 2022, abgerufen am 3. September 2022 (englisch).
  329. Die Europäische Kommission und der der Ausschuss für Humanarzneimittel bei der EMA erteilen ein positives Votum, für die an die Omikron-Virusvariante angepassten mRNA-Impfstoffe von BioNTech/Pfizer und Moderna für Auffrischimpfungen. In: PEI-Website. Paul Ehrlich Institut (PEI), 2. September 2022, abgerufen am 4. September 2022.
  330. First bivalent COVID-19 booster vaccine approved by UK medicines regulator, Medicines and Healthcare products Regulatory Agency (MHRA), Pressemitteilung, 15. August 2022.
  331. Swissmedic genehmigt ersten bivalenten Covid-19 Booster-Impfstoff in der Schweiz, swissmedic, 29. August 2022.
  332. TGA provisionally approves Moderna bivalent COVID-19 vaccine for use as a booster dose in adults, Therapeutic Goods Administration (TGA), 31. August 2022
  333. Adapted vaccine targeting BA.4 and BA.5 Omicron variants and original SARS-CoV-2 recommended for approval. Abgerufen am 24. August 2022.
  334. Bivalent Vaccine Boosters, FDA, 31. August 2022.
  335. Deutscher Ärzteverlag GmbH, Redaktion Deutsches Ärzteblatt: Comirnaty BA.4-5 nun auch zur Grundimmunisierung einsetzbar. 25. August 2023, abgerufen am 12. September 2023.
  336. Christian Kretschmer : BA.4/BA.5-adaptierter Corona-Impfstoff zugelassen. In: Webste der Gelbe Liste. Hrsg. Medizinische Medien Informations GmbH MMI in Langen (Hessen), 15. September 2022, abgerufen am 25. September 2022: „Der neue Impfstoff namens ‚Comirnaty Original/Omicron BA.4-5‘ von BioNTech/Pfizer richtet sich gegen das Ursprungsvirus von SARS-CoV-2 und die aktuell vorherrschenden Omikron-Subvarianten BA.4 und BA.5.
  337. Zydus Cadila: Zydus receives EUA from DCGI for ZyCoV-D, the only needle-free COVID vaccine in the world. (PDF) zyduscadila.com, 20. August 2021, abgerufen am 29. August 2021.
  338. Smriti Mallapaty: India’s DNA COVID vaccine is a world first – more are coming. In: Nature. Band 597, 2. September 2021, S. 161–162, doi:10.1038/d41586-021-02385-x (englisch, nature.com [PDF; 260 kB; abgerufen am 3. September 2021]).
  339. DRAFT landscape of COVID-19 candidate vaccines – 20 March 2020. (PDF) In: who.int. Weltgesundheitsorganisation, abgerufen am 27. März 2020.
  340. a b c d e f g h i j k l m n o p q r s t u v w x y z aa ab ac ad ae af ag ah ai aj ak al am an ao ap aq ar as at au DRAFT landscape of COVID-19 candidate vaccines – 4 April 2020. (PDF) In: who.int. Weltgesundheitsorganisation, abgerufen am 6. April 2020.
  341. Weltgesundheitsorganisation: DRAFT landscape of COVID-19candidate vaccines, 13 August 2020. Abgerufen am 17. August 2020.
  342. COVID-19 – Landscape of novel coronavirus candidate vaccine development worldwide. In: who.int. Weltgesundheitsorganisation, 20. August 2021, abgerufen am 20. August 2021 (englisch).
  343. Weltgesundheitsorganisation: DRAFT landscape of COVID-19candidate vaccines, 5. November 2021. Abgerufen am 8. November 2021 (englisch).
  344. Jackie Salo: First coronavirus vaccine trial begins as Seattle volunteer receives shot. In: nypost.com. 16. März 2020, abgerufen am 17. März 2020 (englisch).
  345. Vaccinetracker. Abgerufen am 8. November 2021.
  346. H. H. Thorp: Underpromise, overdeliver. In: Science. Band 367, Nummer 6485, 27. März 2020, S. 1405, doi:10.1126/science.abb8492, PMID 32205459.
  347. F. Amanat, F. Krammer: SARS-CoV-2 Vaccines: Status Report. In: Immunity. Band 52, Nummer 4, 6. April 2020, S. 583–589, doi:10.1016/j.immuni.2020.03.007, PMID 32259480, PMC 7136867 (freier Volltext).
  348. Clinical Development Success Rates 2006–2015. BIO Industry Analysis, Juni 2016;.
  349. Corona-Impfstudien länger laufen lassen. www.pharmazeutische-zeitung.de, 27. November 2020.
  350. EMA: COVID-19 vaccines: under evaluation. In: Human regulatory/Overview/COVID-19. ema.europa.eu, abgerufen am 30. August 2021 (englisch).
  351. a b CureVac beginnt die globale, zulassungsrelevante Phase 2b/3-Studie für seinen COVID-19-Impfstoffkandidaten CVnCoV. In: curevac.com. CureVac, 14. Dezember 2020, abgerufen am 15. Dezember 2020.
  352. a b A Dose-Confirmation Study to Evaluate the Safety, Reactogenicity and Immunogenicity of Vaccine CVnCoV in Healthy Adults. Abgerufen am 2. September 2020.
  353. A Study to Determine the Safety and Efficacy of SARS-CoV-2 mRNA Vaccine CVnCoV in Adults. In: clinicaltrails.gov. 8. Dezember 2020, abgerufen am 15. Dezember 2020 (englisch).
  354. Curevac zieht Impfstoffkandidaten zurück. In: Gesundheit. sueddeutsche.de, 12. Oktober 2021, abgerufen am 13. Oktober 2021 (dpa).
  355. CTI and Arcturus Therapeutics Announce Initiation of Dosing of COVID-19 STARR™ mRNA Vaccine Candidate, LUNAR-COV19 (ARCT-021) in a Phase 1/2 study. In: bioindustry.org. Abgerufen am 2. September 2020.
  356. Ascending Dose Study of Investigational SARS-CoV-2 Vaccine ARCT-021 in Healthy Adult Subjects. Abgerufen am 3. September 2020 (englisch).
  357. ISRCTN – ISRCTN17072692: Clinical trial to assess the safety of a coronavirus vaccine in healthy men and women. In: isrctn.com. Abgerufen am 10. Juni 2020 (englisch).
  358. a b INOVIO and Advaccine Announce First Dosing of Subject in Phase 2 Clinical Trial for COVID-19 DNA Vaccine Candidate INO-4800 in China. Abgerufen am 14. Januar 2021 (amerikanisches Englisch).
  359. Safety, Tolerability and Immunogenicity of INO-4800 for COVID-19 in Healthy Volunteers – Full Text View – ClinicalTrials.gov. Abgerufen am 14. Januar 2021 (englisch).
  360. a b Phase 2/3 Clinical Trials. In: clincaltrails.gov. Abgerufen am 15. Januar 2021 (englisch).
  361. Study of COVID-19 DNA Vaccine (AG0301-COVID19) – Full Text View – ClinicalTrials.gov. Abgerufen am 2. September 2020 (englisch).
  362. Evaluating the Safety, Tolerability and Immunogenicity of bacTRL-Spike Vaccine for Prevention of COVID-19 – Full Text View. In: clinicaltrials.gov. 22. April 2020, abgerufen am 19. Mai 2020.
  363. Kalbe to start COVID-19 vaccine trial with S. Korean pharma firm. In: thejakartapost.com. 29. Mai 2020, abgerufen am 22. Juni 2020 (englisch).
  364. Tabelle Impfstoffkandidaten, nali-impfen.de. Abgerufen am 29. Januar 2021.
  365. a b c d e f g h i j k l m n o p q r s t DRAFT landscape of COVID-19 candidate vaccines – 26 April 2020. (PDF) In: who.int. Weltgesundheitsorganisation, 26. April 2020, abgerufen am 29. April 2020 (englisch).
  366. GRAd-COV2 Vaccine Against COVID-19 – Full Text View – ClinicalTrials.gov. Abgerufen am 8. Januar 2021 (englisch).
  367. a b c d T. Thanh Le, Z. Andreadakis, A. Kumar, R. Gómez Román, S. Tollefsen, M. Saville, S. Mayhew: The COVID-19 vaccine development landscape. In: Nature reviews. Drug discovery. April 2020, doi:10.1038/d41573-020-00073-5, PMID 32273591.
  368. Immunity and Safety of Covid-19 Synthetic Minigene Vaccine – Full Text View. In: clinicaltrials.gov. 19. Februar 2020, abgerufen am 15. April 2020.
  369. Safety and Immunity of Covid-19 aAPC Vaccine – Full Text View. In: clinicaltrials.gov. 15. Februar 2020, abgerufen am 15. April 2020.
  370. COVAXX Synthetic Multitope Vaccine Selected for Human Trials in Brazil by Dasa, the Largest Diagnostic Company, and Mafra the Leading Private Vaccine Distributor. In: prnewswire.com. Abgerufen am 15. Januar 2021 (englisch).
  371. A Study to Evaluate the Safety, Tolerability, and Immunogenicity of UB-612 COVID-19 Vaccine – Full Text View – ClinicalTrials.gov. Abgerufen am 15. Januar 2021 (englisch).
  372. Neuartiger Impfstoff zur Aktivierung von T-Zell-Antworten gegen SARS-CoV-2 in Erprobung. 1. Dezember 2020, abgerufen am 1. Dezember 2020.
  373. a b Safety and Immunogenicity Trial of Multi-peptide Vaccination to Prevent COVID-19 Infection in Adults (pVAC). Abgerufen am 3. Dezember 2020 (englisch).
  374. Studie zum Tübinger Coronavirus-Impfstoff CoVac-1. Abgerufen am 1. Dezember 2020.
  375. UKT startet T-Zell-Impfstudie gegen das Coronavirus. Abgerufen am 1. Dezember 2020.
  376. BriLife Coronavirus Vaccine – Precision Vaccinations, precisionvaccinations.com, vom 27. Januar 2021. Abgerufen am 2. Februar 2021.
  377. a b Nathan Jeffay: As Israel goes vaccine-wild, will the homegrown version lose its shot? Abgerufen am 8. Januar 2021 (amerikanisches Englisch).
  378. Israel Institute for Biological Research (Hrsg.): A Phase I/II Randomized, Multi-Center, Placebo-Controlled, Dose-Escalation Study to Evaluate the Safety, Immunogenicity and Potential Efficacy of an rVSV-SARS-CoV-2-S Vaccine (IIBR-100) in Adults. NCT04608305. clinicaltrials.gov, 4. Januar 2021 (Online [abgerufen am 6. Januar 2021]).
  379. WHO: COVID-19 vaccine tracker and landscape. In: Publications/Overview. who.int, 27. August 2021, abgerufen am 30. August 2021.
  380. a b c d e f DRAFT landscape of COVID-19candidate vaccines – 11. April 2020. (PDF) In: who.int. 11. April 2020, abgerufen am 15. April 2020.
  381. a b c Praveen: Coronavirus outbreak: Top coronavirus drugs and vaccines in development. In: clinicaltrialsarena.com. 18. März 2020, abgerufen am 18. März 2020 (englisch).
  382. Butantan Institute develops ButanVac, the first 100 % Brazilian vaccine against Covid-19
  383. Brazilian institute announces home-made COVID-19 vaccine
  384. Neues Impfstoff-Prinzip zum Schutz vor Covid-19
  385. Nutzen und Risiken abwägen | Zusammen gegen Corona. Abgerufen am 16. November 2021.
  386. a b Sicherheitsbericht. (PDF) In: PEI. 7. September 2022, abgerufen am 16. März 2023.
  387. D. Mentzer, B. Keller-Stanislawski: Verdachtsfälle von Nebenwirkungen oder Impfkomplikationen nach Impfung mit den Omikron-adaptierten bivalenten COVID-19-Impfstoffen Comirnaty Original/Omicron BA.1, Comirnaty Original/Omicron BA.4-5, Spikevax bivalent/ Omicron BA.1 (bis 31.10.2022 in Deutschland gemeldet). (PDF) In: Bulletin zur Arnzeimittelsicherheit. PEI, Dezember 2022, abgerufen am 16. März 2023.
  388. Bislang keine Hinweise auf vermehrte Nebenwirkungen nach Coronaimpfungen. In: aerzteblatt.de. Bundesärztekammer und Kassenärztliche Bundesvereinigung, 14. Januar 2021, abgerufen am 17. Januar 2021.
  389. Impfstoffe für Menschen. In: pei.de. Paul-Ehrlich-Institut (PEI), 21. November 2019, abgerufen am 28. Januar 2021 (»COVID-19-Impfstoffe«).
  390. Gespaltenes Deutschland: Geimpft sein oder nicht geimpft sein, das ist hier die Frage. Abgerufen am 16. November 2021.
  391. a b Wolfgang Kiehl: Infektionsschutz und Infektionsepidemiologie. Fachwörter – Definitionen – Interpretationen. Hrsg.: Robert Koch-Institut, Berlin 2015, ISBN 978-3-89606-258-1, S. 64: „Impfstoffwirksamkeit“, „Impfstoffeffektivität“.
  392. Mitteilung der STIKO zur COVID-19-Impfung: Impfabstand und heterologes Impfschema nach Erstimpfung mit Vaxzevria (1.7.2021). In: rki.de. Abgerufen am 13. September 2021.
  393. Brechje de Gier et al.: Vaccine effectiveness against SARS-CoV-2 transmission to household contacts during dominance of Delta variant (B.1.617.2), the Netherlands, August to September 2021. Eurosurveillance, Band 26, Nr. 44 (November 2021), doi:10.2807/1560-7917.ES.2021.26.44.2100977.
  394. Karl Lauterbach macht Hoffnung: Wird Delta uns weniger hart treffen als Israel? In: rtl.de. 2. September 2021, abgerufen am 13. September 2021.
  395. Sustained T cell immunity, protection and boosting using extended dosing intervals of BNT162b2 mRNA vaccine. (PDF) In: pitch-study.org. 23. Juli 2021, abgerufen am 13. September 2021: „The serologic response to one or two doses of BNT162b2 falls over time, and is higher after an extended dosing interval compared with the 3–4 week dosing interval that was tested in the licensing trials. By contrast, the T cell response is … of a marginally lower magnitude after the longer dosing interval when measured by the ELISpot assay of T cell effector function, yet shows a more developed memory cell phenotype compared with the 3–4 week dosing interval.“
  396. ‘The sweet spot’: Pfizer more effective with eight-week gap between doses. In: smh.com.au. 23. Juli 2021, abgerufen am 13. September 2021: „Following two vaccine doses, neutralising antibody levels were twice as high after the longer dosing interval compared with the shorter dosing interval.“
  397. Pfizer Vaccine Protection Wanes After 6 Months Study Finds. In: webmd.com. 28. Juli 2021, abgerufen am 13. September 2021.
  398. Over 50 % of Israel’s Citizens are Fully Vaccinated against COVID-19. In: jewishpress.com. 25. Februar 2021, abgerufen am 13. September 2021.
  399. Israel okays COVID booster shot for all public. In: ynetnews.com. 29. August 2021, abgerufen am 13. September 2021.
  400. Israel preparing for possible fourth Covid vaccine dose. In: livemint.com. 12. September 2021, abgerufen am 13. September 2021.
  401. Interim Estimates of COVID-19 Vaccine Effectiveness Against COVID-19–Associated Emergency Department or Urgent Care Clinic Encounters and Hospitalizations Among Adults During SARS-CoV-2 B.1.617.2 (Delta) Variant Predominance — Nine States, June–August 2021. In: cdc.gov. 10. September 2021, abgerufen am 13. September 2021: „CDC used the VISION Network to examine medical encounters (32,867) from 187 hospitals Among fully vaccinated patients, the proportion among hospitalizations were Pfizer-BioNTech, 55.3% ; Moderna, 38.8% ; and Janssen, 6.0% VE against COVID-19 hospitalization was 86 % (95% CI = 82%–89%). VE was significantly lower among adults aged ≥75 years (76%) than among those aged 18–74 years (89%)“ doi:10.15585/mmwr.mm7037e2
  402. Michela Antonelli et al.: Risk factors and disease profile of post-vaccination SARS-CoV-2 infection in UK users of the COVID Symptom Study app: a prospective, community-based, nested, case-control study. (PDF) In: Infectious Diseases, Online First. thelancet.com, 1. September 2021, S. 8, 10 f., abgerufen am 10. September 2021 (englisch, s. a. Figure 3: Disease severity and duration factors in SARS-CoV-2-infected vaccinated versus unvaccinated participants, mit zugehörigen Daten in Supplementary Material, S. 7, Supplementary Table 11, 14. Einzelsymptome dazu s. Supplementary Table 13, 15): „Almost all symptoms were reported less frequently in infected vaccinated individuals than in infected unvaccinated individuals, and vaccinated participants were more likely to be completely asymptomatic, especially if they were 60 years or older. This prospective, community-based, nested, case-control study used data from UK-based Data from 1 531 762 app users reporting an RT-PCR or LFAT test We found that the odds of having symptoms for 28 days or more after post-vaccination infection were approximately halved by having two vaccine doses. This result suggests that the risk of long COVID is reduced in individuals who have received double vaccination, when additionally considering the already documented reduced risk of infection overall. Our data suggest that the risk of post-vaccination SARS-CoV-2 infection is reduced in older age groups. Fully vaccinated individuals with COVID-19, especially if they were 60 years or older, were more likely to be completely asymptomatic than were unvaccinated controls. Supplementary Table 11. Univariate analysis assessing the probability of asymptomatic infection, severe disease (>5 reported symptoms during acute infection), hospitalisation and duration of symptoms ≥28 days in app participants following first and second vaccination, adjusted by age, BMI, and sex. Younger adults (18–59 years); Older adults (60+ years) / Hospitalisation D2 0,57 ; 0,15 / symptoms lasting ≥28 days D2 0,37 ; 0,56 D2=After second dose“ doi:10.1016/S1473-3099(21)00460-6
  403. Jeffrey Morris: Israeli data: How can efficacy vs. severe disease be strong when 60 % of hospitalized are vaccinated? covid-datascience.com, 17. August 2021, abgerufen am 26. August 2021.
  404. a b c d Y. Du, L. Chen, Y. Shi: Booster COVID-19 vaccination against the SARS-CoV-2 Omicron variant: A systematic review. In: Human vaccines & immunotherapeutics. Band 18, Nummer 5, November 2022, S. 2062983, doi:10.1080/21645515.2022.2062983, PMID 35499517.
  405. S. Chenchula, P. Karunakaran, S. Sharma, M. Chavan: Current evidence on efficacy of COVID-19 booster dose vaccination against the Omicron variant: A systematic review. In: Journal of medical virology. Band 94, Nummer 7, Juli 2022, S. 2969–2976, doi:10.1002/jmv.27697, PMID 35246846, PMC 9088621 (freier Volltext) (Review).
  406. In Europa bestimmte von Mai bis Anfang Oktober 2021 die Obervariante B.1.617.2 mit den Untervarianten AY.4 und AY.9 die Ausbreitung von Delta (vgl: SARS-CoV-2-Variante DeltaSonstige Untervarianten AY.*).
  407. R. Krause et al.: Considerations in boosting COVID-19 vaccine immune responses. In: The Lancet. 13. September 2021, abgerufen am 26. Oktober 2021 (deutschsprachige Bearbeitung unterstützt von Deepl-Übersetzer).
  408. Zahlen siehe COVID-19-Pandemie in Israel#Statistik; Grafik siehe Abschnitt Infektionen.
  409. Daten bei datadashboard.health.gov.il (siehe auch en:COVID-19 pandemic in Israel#Graphs, Grafik Vaccines per day).
  410. Nina Weber: Wie wirksam schützt die Booster-Impfung? Spiegel Gesundheit, 1. November 2021, abgerufen am 7. November 2021.
  411. Noam Barda, Noa Dagan, Cyrille Cohen, Miguel A. Hernán, Marc Lipsitch, Isaac Kohane et al.: Effectiveness of a third dose of the BNT162b2 mRNA COVID-19 vaccine for preventing severe outcomes in Israel: an observational study. The Lancet, 29. Oktober 2021, abgerufen am 7. November 2021.
  412. First adapted COVID-19 booster vaccines recommended for approval in the EU. In: EMA-Website (News 01/09/2022). Hrsg.: Europäische Arzneimittel-Agentur (EMA), 1. September 2022, abgerufen am 3. September 2022 (englisch).
  413. Die Europäische Kommission und der der Ausschuss für Humanarzneimittel bei der EMA erteilen ein positives Votum, für die an die Omikron-Virusvariante angepassten mRNA-Impfstoffe von BioNTech/Pfizer und Moderna für Auffrischimpfungen. In: PEI-Website. Paul Ehrlich Institut (PEI), 2. September 2022, abgerufen am 4. September 2022.
  414. US-Behörde empfiehlt Omikron-Impfstoffe. In: tagesschau.de. 2. September 2022, abgerufen am 18. Oktober 2022.
  415. COVID-19 Bivalent Vaccine Boosters. Updated vaccine boosters authorized for use as a single dose. In: FDA-Website. Food and Drug Administration (FDA), 12. Oktober 2022, abgerufen am 18. Oktober 2022.
  416. Adapted vaccine targeting BA.4 and BA.5 Omicron variants and original SARS-CoV-2 recommended for approval. Abgerufen am 24. August 2022.
  417. Covax-InitiativeErfolge und Probleme der weltweiten Impfstoffverteilung. In: deutschlandfunk.de. 14. Juni 2021, abgerufen am 31. Dezember 2021.
  418. Fragen und Antworten: Die weltweite Coronavirus-Krisenreaktion. Europäische Kommission, 28. Mai 2020.
  419. vgl. Coronavirus Global Response: Mittelzusagen. Europäische Union, abgerufen am 26. April 2023.
  420. Vaccines Factsheet (deutsch). Link zum Download, Europäische Kommission, abgerufen am 26. April 2023.
  421. COVID-19: Die EU-Impfstoffstrategie im Überblick. Land Salzburg, abgerufen am 26. April 2023.
  422. Beschaffung von COVID-19-Impfstoffen durch die EU: Nach anfänglichen Herausforderungen ausreichend Dosen gesichert, Leistungsfähigkeit des Verfahrens aber nicht ausreichend bewertet. Sonderbericht des Europäischen Rechnungshofs Nr. 19/2022, S. 12 f.
  423. Ute Strunk: Covid-Impfstoff: Sonderrecht bei Haftung für Hersteller. Wiesbadener Kurier, Website der Universität zu Köln, Rechtswissenschaftliche Fakultät, 25. November 2022.
  424. Samuel Kirsch: Covid-Impfschäden: Müssen Hersteller haften? ZDF-Redaktion Recht und Justiz, 19. April 2023.
  425. vgl. zu Reformüberlegungen: Union für Stiftung zur Entschädigung nach Corona-Impfschäden. Die Zeit, 14. März 2023.
  426. Unsaubere Milliardendeals? Europäische StA ermittelt wegen EU-Impfstoffkäufen. Legal Tribune Online, 17. Oktober 2022.
  427. EU-Verträge mit Impfstoffherstellern: „Mehr Transparenz dringend erforderlich“. Jutta Paulus im Gespräch mit Stefan Heinlein. Deutschlandfunk, 26. Januar 2021.
  428. EU will Impfstoff-Verträge mit Pfizer und Biontech ändern. gesundheitswirtschaft.at, 31. Januar 2023.
  429. Waiver from certain provisions of the TRIPS agreement for the prevention, containment and treatment of Covid-19. (PDF) World Trade Organization, 2. Oktober 2020, abgerufen am 22. März 2021.
  430. Members to continue discussion on proposal for temporary IP waiver in response to COVID-19. Abgerufen am 21. März 2021 (englisch).
  431. Tim Steins: Reiche Länder wollen Patente für Impfstoffe weiterhin nicht freigeben. In: www.euractiv.de. 11. März 2021, abgerufen am 13. März 2021.
  432. WTO-Chefin ruft zu Lizenzherstellung von Impfstoffen auf. In: Deutschlandfunk. 13. März 2021, archiviert vom Original am 17. März 2021; abgerufen am 16. März 2021.
  433. Corona-Impfstoffe: USA für Aussetzung von Patentschutz. In: tagesschau.de. 6. Mai 2021, abgerufen am 6. Mai 2021.
  434. USA unterstützen Aussetzung von Patenten für Corona-Impfstoffe. In: Der Spiegel. 5. Mai 2021, abgerufen am 5. Mai 2021.
  435. Nicola Abé: Globale Corona-Pandemiebekämpfung: Die Reichen impfen, die Armen warten. In: Der Spiegel. 14. Juni 2021, abgerufen am 14. Juni 2021.
  436. Kristalina Georgiewa, Tedros Adhanom Ghebreyesus, David Malpass, Ngozi Okonjo-Iweala: Coronavirus: Wie sich die Pandemie mit 50 Milliarden Dollar beenden ließe. In: Der Spiegel. 1. Juni 2021, abgerufen am 1. Juni 2021.
  437. Ashleigh Furlong: Macron backs waiving COVID-19 vaccine patents ahead of G7 summit. Politico, 9. Juni 2021, abgerufen am 15. September 2021 (amerikanisches Englisch).
  438. Sichere Corona-Impfstoffe für die Menschen in Europa. Europäische Kommission, 17. Juni 2021, abgerufen am 20. Juni 2021.
  439. Covid-19-Impfstoff: Weiterer Vertrag mit Moderna sichert Impfstoff für 2022. Bundesamt für Gesundheit, 6. Mai 2021, abgerufen am 20. Juni 2021.
  440. Covid vaccine: How many people in the UK have been vaccinated so far? 17. Juni 2021, abgerufen am 20. Juni 2021 (englisch).
  441. How Many Covid-19 Vaccine Doses Has The U.S. Secured?
    U.S. buys 200 mln more Moderna COVID-19 vaccine doses
    Pfizer and BioNTech to Provide U.S. Government with an Additional 200 Million Doses of COVID-19 Vaccine to Help Meet Continued Need for Vaccine Supply in the U.S.
    Federal government to purchase additional 100 million doses of Johnson & Johnson’s COVID-19 vaccine
  442. Procuring vaccines for COVID-19
  443. COVID-19: Types of vaccines
  444. a b c d e Timeline: Tracking Latin America’s Road to Vaccination. 14. Juni 2021, abgerufen am 20. Juni 2021 (englisch).
  445. Centre pins hopes on 5 Covid vaccines apart from Covishield, Covaxin, Sputnik
  446. Japan to secure 310 million doses of COVID-19 vaccine, Suga says
  447. CORONAVIRUS/Taiwan to buy 10 million doses of locally produced COVID-19 vaccines
  448. Total number of COVID-19 vaccines secured by agreements compared to vaccines received by Australia as of June 2021, by vaccine type
  449. Indonesia orders 329.5 million COVID-19 vaccines from various brands
  450. Covid-19 Vaccine Prices
  451. 'When can I get my COVID-19 vaccine?': Korea's vaccination plan explained
  452. Gov’t secures 164M doses of Covid-19 vax for 2021
    Philippines orders 10 million more Sinovac COVID-19 vaccine doses
    30M doses of Novavax to arrive in PH in Sept, 8M do next month – PH envoy
    PH to purchase 6-M doses of one-shot J&J COVID-19 vaccine
  453. Drug manufacturers with the highest number of ordered COVID-19 vaccine doses as of March 2021
  454. Covid-19 vaccine: number of doses ordered per country and per laboratory
  455. Sechs Dosen aus Biontexh-Ampulle – 20 Prozent mehr Impfungen möglich. In: mdr.de – Brisant. 8. Januar 2021, abgerufen am 25. Januar 2021.
  456. Der Spiegel, 23. Januar 2021, S. 36.
  457. Staatssekretärin verrät die bisher geheimen Preise der Corona-Impfstoffe – das kostet eine Dosis, je nach Hersteller. In: businessinsider.de. 18. Dezember 2020, abgerufen am 3. Januar 2021.
  458. Vaccine makers turn to microchip tech to beat glass shortages. Wired, 26. Juni 2020, abgerufen am 17. September 2020.
  459. Eine logistische Herausforderung. ZDF, 2. November 2020. Abgerufen am 11. November 2020.
  460. Siegfried und Biontech unterzeichnen Vertrag zur aseptischen Abfüllung eines COVID-19-Impfstoffes. Pressemeldung Siegfried Holding, 14. September 2020. Abgerufen am 11. November 2020.
  461. Bis minus 80 °C: Wer soll Corona-Impfstoff liefern? Apotheke ad hoc, 3. September 2020. Abgerufen am 10. November 2020.
  462. a b Hersteller Produktinformation EMA-Website, Erstpublikation 12. Januar 2021, letztes Update am 3. März 2022.
  463. Biontech reicht weniger Kühlung. In: badische-zeitung.de. Abgerufen am 21. Februar 2021.
  464. BioNTech gibt in Sachen Impfstoff-Kühlung Entwarnung. Abgerufen am 21. Februar 2021.
  465. Comirnaty Impfstoff richtig lagern. Abgerufen am 31. März 2022.
  466. Here’s why COVID-19 vaccines like Pfizer’s need to be kept so cold. In: sciencenews.org. 20. November 2020, abgerufen am 8. August 2021.
  467. Birger Nicolai: Auf der letzten Meile zur Praxis bahnt sich der nächste Impfstoff-Flop an. In: Wirtschaft. welt.de, 11. März 2021, abgerufen am 20. August 2021.
  468. DHL eCommerce Solutions, McKinsey: „COVID-19-Impfstoffe: DHL-Studie gibt Auskunft für die erfolgreiche Zusammenarbeit zwischen öffentlichem und privatem Sektor“. In: Pressemitteilungen. 3. September 2021, abgerufen am 11. Oktober 2021.
  469. Corona-Impfstoff fordert Logistik heraus. Springer Professional, 5. Oktober 2020. Abgerufen am 10. November 2020.
  470. COVID-19-related trafficking of medical products as a threat to public health. United Nations Office on Drugs and Crime, 2020, abgerufen am 10. November 2020.
  471. Interpol warnt vor gefälschten Corona-Impfstoffen. Abgerufen am 25. Februar 2021.
  472. EU-Staaten wurden 900 Millionen Dosen »Geisterimpfstoff« angeboten. In: Der Spiegel. Abgerufen am 25. Februar 2021.
  473. Interpol warns of organized crime threat to COVID-19 vaccines. Interpol, 2. Dezember 2020. Abgerufen am 2. Dezember 2020.
  474. Coronavirus-Impfstoff: Cyberangriff auf Impfstoffdokumente von Biontech. In: spiegel.de. Abgerufen am 23. Februar 2021.
  475. Nordkorea soll Impfstoffhersteller gehackt haben. In: spiegel.de. Abgerufen am 23. Februar 2021.
  476. Nordkorea: Hacker wollten angeblich Corona-Impfstoff von Biontech/Pfizer ausspionieren. In: spiegel.de. Abgerufen am 23. Februar 2021.
  477. Markus Gleis, Marc Thanheiser: Bund-/Länderempfehlung zu aktuellen Fragen der Abfallentsorgung: Hinweise zur Entsorgung von Abfällen aus Maßnahmen zur Eindämmung von COVID-19. (PDF) Umweltbundesamt, abgerufen am 1. Juli 2021.
  478. Mitteilung der Bund/Länder-Arbeitsgemeinschaft Abfall (LAGA) 18: Vollzugshilfe zur Entsorgung von Abfällen aus Einrichtungen des Gesundheitsdienstes. (PDF) Robert Koch-Institut, abgerufen am 1. Juli 2021.
  479. Markus Gleis, Marc Thanheiser: Bund-/Länderempfehlung zu aktuellen Fragen der Abfallentsorgung: Hinweise zur Entsorgung von Abfällen aus Maßnahmen zur Eindämmung von COVID-19. (PDF) Umweltbundesamt, abgerufen am 1. Juli 2021.
  480. Impfabfälle entsorgen. Abfallmanager Medizin, abgerufen am 1. Juli 2021.
  481. Wie soll der Zugang zu einem COVID-19-Impfstoff geregelt werden? Positionspapier der Ständigen Impfkommission beim Robert Koch-Institut, dem Deutschen Ethikrat und der Nationalen Akademie der Wissenschaften Leopoldina, 9. November 2020. Abgerufen am 9. November 2020.
  482. Lilly announces proof of concept data for neutralizing antibody LY-CoV555 in the COVID-19 outpatient setting. www.prnewswire.com, 16. September 2020.
  483. J. Simmank: Ein Cocktail für den Präsidenten. Zeit Online, 3. Oktober 2020.
  484. A. Renn, Y. Fu, X. Hu, M.D. Hall, A. Simeonov: Fruitful Neutralizing Antibody Pipeline Brings Hope To Defeat SARS-Cov-2. Trends in Pharmacological Sciences, 31. Juli 2020 doi:10.1016/j.tips.2020.07.004
  485. A. Casadevall, L. A. Pirofski: The convalescent sera option for containing COVID-19. In: The Journal of clinical investigation. März 2020, doi:10.1172/JCI138003, PMID 32167489.
  486. Eli Lilly beantragt Notfallzulassung für Covid-19-Medikament. apotheke adhoc, 7. Oktober 2020.
  487. Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibody for Treatment of COVID-19. U.S. Food and Drrug Administration (FDA), 9. November 2020, abgerufen am 11. November 2020.
  488. A. Rössler: Notfallzulassung für Baricitinib in den USA. In: www.pharmazeutische-zeitung.de. 20. November 2020, abgerufen am 22. November 2020.
  489. Petra Jungmayr: USA: Notfall-Zulassung für erste SARS-CoV-2-Antikörpertherapie. In: Deutsche Apotheker Zeitung. 23. November 2020, abgerufen am 23. November 2020.
  490. USA: Notfallzulassung für Antikörper-Cocktail zur Covid-Behandlung. In: RND.de. 22. November 2020, abgerufen am 22. November 2020.
  491. Coronavirus – Antikörper-Cocktail erhält US-Notfallzulassung für Covid-Behandlung. In: derstandard.de. 22. November 2020, abgerufen am 23. November 2020.
  492. Coronavirus (COVID-19) Update: FDA Authorizes Monoclonal Antibody for Treatment of COVID-19. U.S. Food and Drug Administration (FDA), 9. Februar 2021, abgerufen am 16. Februar 2021 (englisch).
  493. EMA starts rolling review of REGN-COV2 antibody combination (casirivimab / imdevimab). 1. Februar 2021, abgerufen am 4. Februar 2021.
  494. EMA reviewing data on monoclonal antibody use for COVID-19. In: www.ema.europa.eu. 4. Februar 2021, abgerufen am 16. Februar 2021 (englisch).
  495. CORAT Therapeutics GmbH soll COVID-19-Medikament entwickeln NBank Capital beteiligt sich an Braunschweiger Biotech-Startup. Pressemitteilung des Niedersächsischen Ministeriums für Wirtschaft, Arbeit, Verkehr und Digitalisierung und des Niedersächsischen Ministeriums für Wissenschaft und Kultur vom 16. September 2020 (PDF).
  496. Ewen Callaway: Mix-and-match COVID vaccines trigger potent immune response. In: Nature. Band 593, Nr. 7860, 19. Mai 2021, ISSN 0028-0836, S. 491–491, doi:10.1038/d41586-021-01359-3.
  497. Meagan E. Deming, Kirsten E. Lyke: A ‘mix and match’ approach to SARS-CoV-2 vaccination. In: Nature Medicine. 26. Juli 2021, ISSN 1546-170X, S. 1–2, doi:10.1038/s41591-021-01463-x (nature.com [abgerufen am 16. August 2021]).
  498. Joana Barros-Martins, Swantje I. Hammerschmidt, Anne Cossmann, Ivan Odak, Metodi V. Stankov: Immune responses against SARS-CoV-2 variants after heterologous and homologous ChAdOx1 nCoV-19/BNT162b2 vaccination. In: Nature Medicine. 14. Juli 2021, ISSN 1546-170X, S. 1–5, doi:10.1038/s41591-021-01449-9 (nature.com [abgerufen am 16. August 2021]).
  499. Tina Schmidt, Verena Klemis, David Schub, Janine Mihm, Franziska Hielscher: Immunogenicity and reactogenicity of heterologous ChAdOx1 nCoV-19/mRNA vaccination. In: Nature Medicine. 26. Juli 2021, ISSN 1546-170X, S. 1–6, doi:10.1038/s41591-021-01464-w (nature.com [abgerufen am 16. August 2021]).
  500. Lisa Müller, Marcel Andrée, Wiebke Moskorz, Ingo Drexler, Lara Walotka: Age-dependent immune response to the Biontech/Pfizer BNT162b2 COVID-19 vaccination. Infectious Diseases (except HIV/AIDS), 5. März 2021, doi:10.1101/2021.03.03.21251066 (medrxiv.org [abgerufen am 16. August 2021]).
  501. T. Brosh-Nissimov, E. Orenbuch-Harroch, M. Chowers, M. Elbaz, L. Nesher, M. Stein, Y. Maor, R. Cohen, K. Hussein, M. Weinberger, O. Zimhony, B. Chazan, R. Najjar, H. Zayyad, G. Rahav, Y. Wiener-Well: BNT162b2 vaccine breakthrough: clinical characteristics of 152 fully vaccinated hospitalized COVID-19 patients in Israel. In: Clinical microbiology and infection : the official publication of the European Society of Clinical Microbiology and Infectious Diseases. Juli 2021, doi:10.1016/j.cmi.2021.06.036, PMID 34245907, PMC 8261136 (freier Volltext).
  502. Kathleen Dooling: An Additional Dose of mRNA COVID-19 Vaccine Following a Primary Series in Immunocompromised People. Hrsg.: CDC Advisory Committee on Immunization Practice. 13. August 2021 (cdc.gov ).
  503. Patrick Hunziker: Personalized-dose Covid-19 vaccination in a wave of virus Variants of Concern: Trading individual efficacy for societal benefit. In: Precision Nanomedicine. 24. Juli 2021, ISSN 2639-9431, doi:10.33218/001c.26101 (precisionnanomedicine.com [abgerufen am 16. August 2021]).
  504. Juliette Irmer: Wie Omikron im Tierreich wütet. Frankfurter Allgemeine, FAZ.net, 22. Dezember 2021, abgerufen am 24. Dezember 2021.
  505. WHO, UN set out steps to meet world COVID vaccination targets. World Health Organization, 7. Oktober 2021, abgerufen am 31. Dezember 2021.
  506. COVID-19: WHO calls on countries to vaccinate 70% of their population by mid-2022. In: sky news. 29. Dezember 2021, abgerufen am 31. Dezember 2021.
  507. Covid-19 vaccinations: African nations miss WHO target. In: BBC. 31. Dezember 2021, abgerufen am 31. Dezember 2021.
  508. World Bank Country and Lending Groups. In: datahelpdesk.worldbank.org. Abgerufen am 31. Dezember 2021: „For the current 2022 fiscal year, low-income economies are defined as those with a GNI per capita of $1,045 or less in 2020“
  509. WHO Coronavirus (COVID-19) Dashboard: Egypt. Abgerufen am 6. November 2022 (englisch).
  510. Coronavirus (COVID-19): Albanien. Abgerufen am 18. Dezember 2021.
  511. WHO Coronavirus (COVID-19) Dashboard: Albania. Abgerufen am 10. November 2022 (englisch).
  512. COVID-19 Dashboard. Archiviert vom Original am 22. Februar 2021; abgerufen am 22. Juli 2021 (englisch).
  513. WHO Coronavirus (COVID-19) Dashboard: Andorra. Abgerufen am 27. August 2022 (englisch).
  514. Vacuna COVID-19. Abgerufen am 16. März 2023.
  515. Coronavirus (COVID-19): Äthiopien. Abgerufen am 8. Mai 2022.
  516. WHO Coronavirus (COVID-19) Dashboard: Ethiopia. Abgerufen am 11. September 2022 (englisch).
  517. Australia’s COVID-19 vaccine rollout. Australian Government, Department of Health, abgerufen am 2. Mai 2022 (englisch).
  518. Coronavirus (COVID-19): Australien. Abgerufen am 21. Juli 2022.
  519. WHO Coronavirus (COVID-19) Dashboard: Australia. Abgerufen am 1. Januar 2023 (englisch).
  520. CORONAVIRUS (COVID-19): Daily COVID-19 Report. Abgerufen am 27. August 2022 (englisch).
  521. Coronavirus (COVID-19): Bangladesch. Abgerufen am 9. April 2022.
  522. WHO Coronavirus (COVID-19) Dashboard: Bangladesh. Abgerufen am 10. März 2023 (englisch).
  523. WHO Coronavirus (COVID-19) Dashboard: Belarus. Abgerufen am 26. August 2022 (englisch).
  524. Belgium COVID-19 Epidemiological Situation Vaccination. Abgerufen am 8. Mai 2022 (englisch).
  525. WHO Coronavirus (COVID-19) Dashboard: Belgium. Abgerufen am 23. Oktober 2022 (englisch).
  526. WHO Coronavirus (COVID-19) Dashboard: Bhutan. Abgerufen am 16. Oktober 2022 (englisch).
  527. Coronavirus (COVID-19): Bosnien und Herzegowina. Abgerufen am 15. November 2021.
  528. WHO Coronavirus (COVID-19) Dashboard: Bosnia and Herzegovina. Abgerufen am 30. Januar 2022 (englisch).
  529. Mapa da vacinação contra Covid-19 no Brasil. Abgerufen am 16. März 2022 (portugiesisch).
  530. Coronavirus (COVID-19): Brasilien. Abgerufen am 11. September 2022.
  531. WHO Coronavirus (COVID-19) Dashboard: Brazil. Abgerufen am 18. Februar 2023 (englisch).
  532. Coronavirus (COVID-19): Bulgarien. Abgerufen am 15. November 2021.
  533. WHO Coronavirus (COVID-19) Dashboard: Bulgaria. Abgerufen am 19. November 2022 (englisch).
  534. Avance vacunación Campaña SARS-CoV-2. Total País. Abgerufen am 10. Dezember 2021 (spanisch).
  535. Coronavirus (COVID-19): Chile. Abgerufen am 19. November 2022.
  536. WHO Coronavirus (COVID-19) Dashboard: Chile. Abgerufen am 10. März 2023 (englisch).
  537. WHO Coronavirus (COVID-19) Dashboard: China. Abgerufen am 1. Januar 2023 (englisch).
  538. Coronavirus (COVID-19): Festlandchina. Abgerufen am 27. August 2022.
  539. WHO Coronavirus (COVID-19) Dashboard: Costa Rica. Abgerufen am 6. November 2022 (englisch).
  540. Statens Serum Institut – covid-19 – Danmark (regionalt) Se information. Abgerufen am 26. August 2022 (dänisch).
  541. Digitales Impfquotenmonitoring zur COVID-19-Impfung. Robert Koch-Institut, abgerufen am 7. Februar 2023.
  542. Impfdashboard.de. Abgerufen am 12. März 2023.
  543. Coronavirus (COVID-19): Dominikanische Republik. Abgerufen am 16. Oktober 2022.
  544. Coronavirus dataset. Abgerufen am 6. November 2022 (englisch).
  545. Uppföljning av COVID-19 vaccinationerna. Abgerufen am 26. August 2022 (schwedisch).
  546. Informations Covid-19 – Nombre de personnes vaccinées. Abgerufen am 4. September 2021 (französisch).
  547. VaccinTracker. Abgerufen am 27. April 2022 (französisch).
  548. Coronavirus (COVID-19): Frankreich. Abgerufen am 1. Januar 2023.
  549. In Gibraltar werden auch Pendler aus Spanien geimpft; darum sind dort die Zahlen der Erst- und vollständigen Impfungen größer als die Einwohnerzahl; Marc Röhlig: Warum Gibraltar kein Beweis für die angebliche Nutzlosigkeit der Coronaimpfung ist. Spiegel Ausland, 20. November 2021, abgerufen am 8. Dezember 2021.
  550. Weekly Covid Vaccine Statistics. Abgerufen am 13. Mai 2022.
  551. Coronavirus (COVID-19): Gibraltar. Abgerufen am 9. April 2022.
  552. Στατιστικά εμβολιασμού για τον COVID-19. Abgerufen am 26. August 2022 (englisch).
  553. Ministry of Health and Family Welfare. Abgerufen am 1. Januar 2023 (englisch).
  554. Vaksinasi COVID-19 Nasional. Abgerufen am 10. März 2023 (indonesisch).
  555. WHO Coronavirus (COVID-19) Dashboard: Iran (Islamic Republic of). Abgerufen am 6. November 2022 (englisch).
  556. COVID-19 Ireland – Vaccinations. Abgerufen am 2. September 2021 (englisch).
  557. Coronavirus (COVID-19): Irland. Abgerufen am 23. September 2022.
  558. COVID-19 vaccinations in Iceland – statistics. Abgerufen am 27. August 2022 (englisch).
  559. נגיף הקורונה בישראל - תמונת מצב כללית. Abgerufen am 26. August 2022 (hebräisch).
  560. Report Vaccini Anti COVID-19. Abgerufen am 7. August 2021 (italienisch).
  561. Coronavirus (COVID-19): Italien. Abgerufen am 1. Januar 2023.
  562. Coronavirus (COVID-19): Japan. Abgerufen am 18. Februar 2023.
  563. Coronavirus (COVID-19) data for Jersey. Abgerufen am 26. August 2022 (englisch).
  564. Coronavirus (COVID-19): Kambodscha. Abgerufen am 9. März 2022.
  565. WHO Coronavirus (COVID-19) Dashboard: Cambodia. Abgerufen am 1. Januar 2023 (englisch).
  566. COVID-19 in Canada (Dashboard). Abgerufen am 30. November 2021 (englisch).
  567. Coronavirus (COVID-19): Kanada. Abgerufen am 11. September 2022.
  568. WHO Coronavirus (COVID-19) Dashboard: Canada. Abgerufen am 21. Juli 2022 (englisch).
  569. National Covid-19 Vaccination Program Data. Abgerufen am 5. August 2021 (englisch).
  570. Coronavirus (COVID-19): Katar. Abgerufen am 13. Mai 2022.
  571. WHO Coronavirus (COVID-19) Dashboard: Qatar. Abgerufen am 16. März 2023 (englisch).
  572. WHO Coronavirus (COVID-19) Dashboard: Kenya. Abgerufen am 19. November 2022 (englisch).
  573. Vacunación contra COVID-19. Abgerufen am 2. November 2021 (spanisch).
  574. Coronavirus (COVID-19): Kolumbien. Abgerufen am 10. März 2022.
  575. WHO Coronavirus (COVID-19) Dashboard: Colombia. Abgerufen am 6. November 2022 (englisch).
  576. WHO Coronavirus (COVID-19) Dashboard: Democratic Republic of the Congo. Abgerufen am 1. Januar 2023 (englisch).
  577. WHO Coronavirus (COVID-19) Dashboard: Kosovo. Abgerufen am 3. Januar 2022 (englisch).
  578. Coronavirus (COVID-19): Kosovo. Abgerufen am 26. August 2022.
  579. Coronavirus (COVID-19): Kroatien. Abgerufen am 26. August 2022.
  580. Actualización de la estrategia para el desarrollo de los candidatos vacunales cubanos. Abgerufen am 10. März 2023 (spanisch).
  581. Coronavirus (COVID-19): Kuba. Abgerufen am 21. Juli 2021.
  582. Coronavirus (COVID-19): Lettland. Abgerufen am 5. Mai 2022.
  583. WHO Coronavirus (COVID-19) Dashboard: Latvia. Abgerufen am 16. März 2023 (englisch).
  584. a b Kennzahlen, Schweiz und Liechtenstein – Impfdosen. Bundesamt für Gesundheit, abgerufen am 12. März 2023.
  585. Vaccination. Abgerufen am 19. November 2021 (englisch).
  586. Coronavirus (COVID-19): Litauen. Abgerufen am 16. Oktober 2022.
  587. Coronavirus – Rapport Journalier. Abgerufen am 26. Mai 2022 (französisch).
  588. Coronavirus (COVID-19): Malaysia. Abgerufen am 23. September 2022.
  589. Coronavirus (COVID-19): Malediven. Abgerufen am 1. März 2022.
  590. WHO Coronavirus (COVID-19) Dashboard: Maldives. Abgerufen am 23. Oktober 2022 (englisch).
  591. Covid-19 Dashboard. Abgerufen am 2. September 2021 (englisch).
  592. WHO Coronavirus (COVID-19) Dashboard: Malta. Abgerufen am 25. September 2021 (englisch).
  593. Coronavirus (COVID-19): Malta. Abgerufen am 18. September 2022.
  594. Coronavirus (COVID-19): Insel Man. Abgerufen am 16. März 2022.
  595. WHO Coronavirus (COVID-19) Dashboard: Morocco. Abgerufen am 26. August 2022 (englisch).
  596. Coronavirus (COVID-19): Mexiko. Abgerufen am 31. März 2022.
  597. WHO Coronavirus (COVID-19) Dashboard: Mexico. Abgerufen am 1. Januar 2023 (englisch).
  598. WHO Coronavirus (COVID-19) Dashboard: Republic of Moldova. Abgerufen am 16. Oktober 2022 (englisch).
  599. WHO Coronavirus (COVID-19) Dashboard: Monaco. Abgerufen am 10. November 2022 (englisch).
  600. Coronavirus (COVID-19): Mongolei. Abgerufen am 17. April 2022.
  601. WHO Coronavirus (COVID-19) Dashboard: Mongolia. Abgerufen am 10. November 2022 (englisch).
  602. Najvažnije informacije o COVID-19 i vakcinaciji u Crnoj Gori – covidodgovor.me. Archiviert vom Original am 12. Mai 2022; abgerufen am 5. Mai 2022 (serbokroatisch).
  603. COVID-19 vaccines. Abgerufen am 14. Januar 2022 (englisch).
  604. Coronavirus (COVID-19): Neuseeland. Abgerufen am 23. September 2022.
  605. COVID-19-vaccinaties. Abgerufen am 24. September 2022 (englisch).
  606. WHO Coronavirus (COVID-19) Dashboard: Nigeria. Abgerufen am 19. November 2022 (englisch).
  607. Coronavirus (COVID-19): Nordmazedonien. Abgerufen am 1. November 2021.
  608. WHO Coronavirus (COVID-19) Dashboard: North Macedonia. Abgerufen am 27. August 2022 (englisch).
  609. K.K.T.C. Sağlık Bakanlığı – Aşı Bilgi Sistemi. Abgerufen am 9. Oktober 2022 (türkisch).
  610. Coronavirus vaccination – statistics. Abgerufen am 9. Oktober 2022 (englisch).
  611. Corona-Schutzimpfung in Österreich. Abgerufen am 12. März 2023.
  612. Coronavirus (COVID-19): Österreich. Abgerufen am 6. November 2022.
  613. Coronavirus (COVID-19): Palästina. Abgerufen am 17. September 2021.
  614. WHO Coronavirus (COVID-19) Dashboard: occupied Palestinian territory, including east Jerusalem. Abgerufen am 6. November 2022 (englisch).
  615. Coronavirus (COVID-19): Pakistan. Abgerufen am 19. November 2022.
  616. COVID Vaccination. Ehemals im Original (nicht mehr online verfügbar); abgerufen am 31. März 2022.@1@2Vorlage:Toter Link/ncoc.gov.pk (Seite nicht mehr abrufbar. Suche in Webarchiven)
  617. WHO Coronavirus (COVID-19) Dashboard: Papua New Guinea. Abgerufen am 12. März 2023 (englisch).
  618. COVID-19 Dashboard. Abgerufen am 15. Mai 2021 (englisch).
  619. Coronavirus (COVID-19): Philippinen. Abgerufen am 30. September 2021.
  620. WHO Coronavirus (COVID-19) Dashboard: Philippines. Abgerufen am 23. Oktober 2022 (englisch).
  621. Panel szczepionkowy – monitor. Abgerufen am 9. Oktober 2022 (polnisch).
  622. Relatório de Vacinação. Archiviert vom Original am 17. November 2021; abgerufen am 20. November 2021 (portugiesisch).
  623. Número Total de Vacinas Administratas. Ehemals im Original (nicht mehr online verfügbar) am 15. Oktober 2021; abgerufen am 16. Oktober 2021 (portugiesisch).@1@2Vorlage:Toter Link/www.sns.gov.pt (Seite nicht mehr abrufbar. Suche in Webarchiven)
  624. Coronavirus (COVID-19): Portugal. Abgerufen am 1. März 2022.
  625. WHO Coronavirus (COVID-19) Dashboard: Portugal. Abgerufen am 1. Januar 2023 (englisch).
  626. Date Oficiale. Abgerufen am 30. Dezember 2021 (rumänisch).
  627. Coronavirus (COVID-19): Rumänien. Abgerufen am 8. Juni 2022.
  628. Russia Covid vaccination status globally. Abgerufen am 1. Januar 2023 (russisch).
  629. CAMPAGNA VACCINALEANTI COVID-19. Abgerufen am 16. Oktober 2022 (italienisch).
  630. WHO Coronavirus (COVID-19) Dashboard: Saudi Arabia. Abgerufen am 26. August 2022 (englisch).
  631. Statistik över vaccinerade mot covid-19. Abgerufen am 26. August 2022 (schwedisch).
  632. Coronavirus (COVID-19): Serbien. Abgerufen am 8. Juni 2022.
  633. COVID-19 Vaccination. Abgerufen am 18. Oktober 2021 (englisch).
  634. Coronavirus (COVID-19): Singapur. Abgerufen am 16. September 2022.
  635. Koronavírus na Slovensku v číslach. Abgerufen am 23. November 2021 (englisch).
  636. Coronavirus (COVID-19): Slowakei. Abgerufen am 1. Januar 2022.
  637. WHO Coronavirus (COVID-19) Dashboard: Slovakia. Abgerufen am 9. Oktober 2022 (englisch).
  638. Cepljenje proti covid-19 v Sloveniji. Abgerufen am 26. Juni 2022 (slowenisch).
  639. Estrategia de vacunación COVID-19 en España. Abgerufen am 18. Februar 2023 (spanisch).
  640. Coronavirus (COVID-19): Südafrika. Abgerufen am 19. November 2022.
  641. Coronavirus (COVID-19): Südkorea. Abgerufen am 1. Januar 2023.
  642. WHO Coronavirus (COVID-19) Dashboard: United Republic of Tanzania. Abgerufen am 19. November 2022 (englisch).
  643. Coronavirus (COVID-19): Taiwan. Abgerufen am 10. März 2023.
  644. Coronavirus (COVID-19): Thailand. Abgerufen am 24. September 2022.
  645. Souhrnný přehled za ČR. Abgerufen am 16. Oktober 2022 (tschechisch).
  646. Toplam Aşılanan Kişi Sayısı. Abgerufen am 21. Juli 2022 (englisch).
  647. Coronavirus (COVID-19): Türkei. Abgerufen am 9. Oktober 2022.
  648. Coronavirus (COVID-19): Ukraine. Abgerufen am 19. März 2022.
  649. Coronavirus (COVID-19): Ungarn. Abgerufen am 9. April 2022.
  650. Vacunas Covid. Abgerufen am 9. Oktober 2022 (spanisch).
  651. UAE Coronavirus (COVID-19) Updates. Abgerufen am 21. August 2021 (englisch).
  652. Coronavirus (COVID-19): Vereinigte Arabische Emirate. Abgerufen am 7. März 2022.
  653. WHO Coronavirus (COVID-19) Dashboard: United Arab Emirates. Abgerufen am 26. August 2022 (englisch).
  654. Vaccinations in United Kingdom. Abgerufen am 1. Januar 2023 (englisch).
  655. COVID Data Tracker: COVID-19 Vaccinations in the United States. In: cdc.gov. Centers for Disease Control and Prevention, abgerufen am 10. März 2023 (englisch).
  656. Coronavirus (COVID-19): Vietnam. Abgerufen am 16. März 2022.
  657. WHO Coronavirus (COVID-19) Dashboard: Viet Nam. Abgerufen am 1. Januar 2023 (englisch).
  658. Coronavirus (COVID-19): Zypern. Abgerufen am 27. Februar 2022.
  659. WHO Coronavirus (COVID-19) Dashboard: Cyprus. Abgerufen am 26. August 2022 (englisch).
  660. WHO Coronavirus (COVID-19) Dashboard. Abgerufen am 2. Januar 2023 (englisch).

Anmerkungen

  1. a b Externe Identifikatoren von bzw. Datenbank-Links zu Imelasomeran: CAS-Nummer: 2763208-92-8, Wikidata: Q120176228.
  2. 95%-Konfidenzintervall, d. h. bzgl. der statistischen Umsetzung der Studie liegt die reale Effektivität mit 95 % Sicherheit in diesem ermittelten Vertrauensbereich. Zu möglichen weiteren Einschränkungen der Studienaussagen s. Studie.
  3. In den USA wird Ad26.COV2.S deutlich seltener eingesetzt, so dass die Stichprobengröße kleiner und das Konfidenzintervall entsprechend größer als bei BNT162b2 bzw. mRNA-1273 ist.