Circumscription (taxonomy)

In this article we will explore the fascinating world of Circumscription (taxonomy), a topic that has captured the attention of researchers, enthusiasts and the curious alike. Circumscription (taxonomy) has been the object of debate, study and admiration throughout history, and its relevance in today's world only grows. Through this article, we aim to delve into the different aspects that make up Circumscription (taxonomy), from its origin to its most recent applications, in order to better understand its impact on our society and the world in general. Join us on this journey of discovery and learning about Circumscription (taxonomy).

biological taxonomy, circumscription is the content of a taxon, that is, the delimitation of which subordinate taxa are parts of that taxon.

In biological taxonomy, circumscription is the content of a taxon, that is, the delimitation of which subordinate taxa are parts of that taxon. For example, if we determine that species X, Y, and Z belong in genus A, and species T, U, V, and W belong in genus B, those are our circumscriptions of those two genera. Another systematist might determine that T, U, V, W, X, Y, and Z all belong in genus A. Agreement on circumscriptions is not governed by the Codes of Zoological or Botanical Nomenclature, and must be reached by scientific consensus.

A goal of biological taxonomy is to achieve a stable circumscription for every taxon. This goal conflicts, at times, with the goal of achieving a natural classification that reflects the evolutionary history of divergence of groups of organisms. Balancing these two goals is a work in progress, and the circumscriptions of many taxa that had been regarded as stable for decades are in upheaval in the light of rapid developments in molecular phylogenetics. New evidence may suggest that a traditional circumscription should be revised, particularly if the old circumscription is shown to be paraphyletic (a group containing some but not all of the descendants of the common ancestor).

For example, the family Pongidae contained orangutans (Pongo), chimpanzees (Pan) and gorillas (Gorilla), but not humans (Homo), which are placed in Hominidae. Once molecular phylogenetic data showed that chimpanzees were more closely related to humans than to gorillas or orangutans, it became clear that Pongidae is a paraphyletic group, and the circumscription of Hominidae was changed to include all four extant genera of great apes.

Sometimes, systematists propose novel circumscriptions that do not address paraphyly. For example, the broadly circumscribed monophyletic moth superfamily Pyraloidea can be split into two families, Pyralidae and Crambidae, which are reciprocally monophyletic sister taxa.

An example of a botanical group with unstable circumscription is Anacardiaceae, a family of flowering plants. Some experts favor a circumscription in which this family includes the Blepharocaryaceae, Julianaceae, and Podoaceae, which are sometimes considered to be separate families.

See also

References

  1. ^ Perelman, Polina, Warren E. Johnson, Christian Roos, Hector N. Seuánez, Julie E. Horvath, Miguel AM Moreira, Bailey Kessing et al. "A molecular phylogeny of living primates." PLoS Genet 7, no. 3 (2011): e1001342.
  2. ^ Nuss, M., B. Landry, R. Mally, F. Vegliante, A. Tränkner, F. Bauer, J. Hayden, A. Segerer, R. Schouten, H. Li, T. Trofimova, M. A. Solis, J. De Prins & W. Speidel 2003–2020: Global Information System on Pyraloidea. - www.pyraloidea.org
  3. ^ Anacardiaceae Archived March 15, 2005, at the Wayback Machine in L. Watson and M.J. Dallwitz (1992 onwards). The families of flowering plants. Archived December 13, 2010, at the Wayback Machine
  4. ^ Stevens, P. F. (2001 onwards). Angiosperm Phylogeny Website. Version 9, June 2008 .