Lagrange-pont

A Lagrange-pont jelentősége a mai társadalomban tagadhatatlan. Legyen szó közszereplőről, vitatémáról vagy jelentős dátumról, a Lagrange-pont releváns helyet foglal el a napi beszélgetésekben. Hatása az élet minden területére kiterjed, a politikától a szórakoztatásig, befolyásolja véleményünket, döntéseinket és tetteinket. Ebben a cikkben megvizsgáljuk, hogy a Lagrange-pont hogyan alakította társadalmunkat, és hogyan játszik továbbra is központi szerepet az életünkben.

A Nap-Föld rendszer öt Lagrange-pontja. A nyilak a gravitációs helyzeti energia növekvő irányába mutatnak, az L1, L2 és L3 pontok eszerint instabilak, mert van náluk alacsonyabb energiaszintű pálya, az L4 és L5 pontok stabilak.
Az öt Lagrange-pont (zölddel jelölve), két, egymás körül keringő égitesthez (például Nap-sárga, Föld-kék) viszonyítva

A Lagrange-pont (librációs pont, illetve L1, L2, L3, L4, L5 pontok) a csillagászatban a tér azon öt pontja, amelyben egy kis test két, egymás körül keringő nagyobb test együttes gravitációs vonzásának hatására azokhoz képest közelítőleg nyugalomban maradhat. Az ebben a pontban elhelyezett test helyzete fix marad a másik kettőhöz képest, ebből a szempontból hasonló a geostacionárius pályához.

A Lagrange pontok felfedezés-története

A Lagrange-pontokat Joseph Louis Lagrange olasz-francia matematikus fedezte fel a 18. században. A Naprendszerben a stabil L4 és L5 Lagrange-pontokban lévő pályákon kering sok kisbolygó, a Nap-Jupiter rendszerben pedig a Trójai csoport. A Nap-Föld rendszer L4 vagy L5 Lagrange-pontjában keletkezett a feltételezett Theia bolygó, mely később a Földdel ütközve létrehozta a Holdat.

A Lagrange pontok mozgása a középponti égitest körül körpályán keringő kisebb tömegű égitest környezetében.

Lagrange pontok a Nap-Föld rendszerben

A Földhöz képest stabilan kötött pálya sok műhold számára kedvező, ezeket a Nap-Föld rendszer Lagrange-pontjai körüli pályára (de Lissajous-pálya vagy halópálya) állítják.

Az L1, L2 és L3 pontok instabilak, az ebben a pontban lévő test csak rövidebb ideig tud megmaradni, a környezet zavaró hatásai (más testek gravitációs hatása, napszél stb.) könnyen kimozdítják onnan, ekkor a test Lissajous-pályára tér át.

Eddig 10 űrszonda mozgását tervezték úgy, hogy annak része legyen a Nap-Föld rendszer L1 és az L2 Lagrange pontja környezetében végzett mozgás. Legutóbb a két amerikai GRAIL űrszonda és a kínai Chang'e-2 űrszonda járt a Nap-Föld rendszer L pontjai közelében.
A James Webb űrtávcső a 2022 tavaszán érte el a Nap–Föld rendszer L2 pontjának környékét, ahol a Nap-Föld tengelyre merőleges keringést végez.

2023 július elsején a floridai Cape Canaveral űrközpontból fellőtték az Európai Űrügynökség (ESA) Euclid űrtávcsövét amely szintén az L2 pontból fogja vizsgálni a távoli univerzumot. Várhatóan egy hónapos út és két hónapos beüzemelés és kalibrálás után megkezdi a hat évesre tervezett munkáját: az égbolt kb. egyharmadának felmérését és több mint egy milliárd galaxis megfigyelését. Azt várják tőle, hogy az univerzum gyorsulva tágulását pontosabban megmérve válaszokat kapnak a sötét energiával és a sötét anyaggal kapcsolatban.

A Kordylewski-féle porholdak

A Föld-Hold rendszerben is találhatóak az L4, L5 pontokban az összegyűlt anyagok, ezek 60 fokra keringenek a Hold előtt és után. Ez a rendszer mérete miatt porfelhőre korlátozódik. A porfelhők jelenlétét Kazimierz Kordylewski vetette fel 1956-ban, majd 1966, 1973 és 1974-ben többszöri trópusi megfigyeléssel igazolta. Mivel a Hold fénye elnyomja a por derengését, a megfigyelést akkor lehetett elvégezni, amikor a Hold épp a horizont alatt volt. 2018-ban a Horváth Gábor (ELTE) által vezetett kutatócsoport polarizált szűrők segítségével ismét megfigyelte a jelenséget, és megerősítette a korábbi jelentés tartalmát.

A Kordylewski-felhők megfigyeléseiből a következő eredmények szület­tek:

  • A felhők nem a Hold pályája, hanem az ekliptika vonalában mozognak,
  • Egy hónap alatt a felhők körülbelül 10° sugarú kört írnak le a librációs alappontok körül.
  • Átmérő­jük megközelítőleg 10°.

Jegyzetek

Források

  • Érdi Bálint (2003a): Bolygórendszerek kaotikus dinamikája. I. rész. Természet Világa. 5, 210.
  • Érdi Bálint (2003b): Bolygórendszerek kaotikus dinamikája. II. rész. Természet Világa, 2003/6, 256.
  • Bérczi Szaniszló (1991): Kristályoktól bolygótestekig. Akadémiai Kiadó, Budapest. (Lópatkó alakú pályákról a 111. oldalon)

További információk

Commons:Category:Lagrange points
A Wikimédia Commons tartalmaz Lagrange-pont témájú médiaállományokat.

Kapcsolódó szócikkek