Powietrze

W tym artykule szczegółowo zbadamy Powietrze i wszystko, co wiąże się z tym tematem. Od swoich początków po dzisiejsze znaczenie, poprzez implikacje w różnych obszarach, Powietrze jest tematem, który zasługuje na analizę z różnych perspektyw. W następnych kilku wierszach zagłębimy się w najważniejsze aspekty Powietrze, odkrywając jego możliwe skutki i oferując globalną wizję tego tematu. Niezależnie od tego, czy znasz Powietrze, czy jesteś nowy w temacie, ten artykuł ma na celu przedstawienie pełnego i aktualnego spojrzenia na ten problem, zachęcając Cię do refleksji i lepszego zrozumienia Powietrze.

Powietrze (łac. aer) – mieszanina gazów i aerozoli składająca się na atmosferę ziemską. Pojęcie jest stosowane przede wszystkim w odniesieniu do tej części powłoki gazowej, której chemiczny skład jest wyrównany wskutek cyrkulacji gazów w troposferze (zob. homosfera, warstwa o grubości do 100 km), bywa jednak odnoszone również do wszystkich sfer ziemskiej atmosfery, o różnym składzie chemicznym i właściwościach fizycznych.

W przednaukowej filozofii przyrody, w klasycznej koncepcji Empedoklesa, rozwiniętej następnie przez Arystotelesa, powietrze było uważane za jeden z czterech żywiołów.

Właściwości fizyczne powietrza

Powietrze jest bezbarwne, bez smaku, słabo rozpuszczalne w wodzie. Skroplone powietrze jest bladoniebieskie. Gęstość powietrza zależy od ciśnienia, temperatury oraz składu; dla suchego powietrza, przy ciśnieniu atmosferycznym, na poziomie morza, w temperaturze 20 °C wynosi około 1,2 kg/m³. Temperatura topnienia zestalonego powietrza wynosi około −213 °C, a temperatura wrzenia około −191 °C.

Skład powietrza

Skład procentowy powietrza

Skład mieszaniny gazów, występujących w najniższej części ziemskiej atmosfery, zmieniał się w historii Ziemi w bardzo szerokim zakresie (np. zmiany stężenia CO2). Atmosfera zawierająca tlen („trzecia atmosfera” w ewolucji Ziemi, „powietrze”) powstawała stopniowo, po osiągnięciu ewolucyjnego sukcesu przez organizmy fotosyntetyzujące. W kolejnych epokach geologicznych stężenia głównych składników powietrza wahały się, co bywało zarówno skutkiem, jak i przyczyną zmian klimatu (sprzężenia zwrotne). Współcześnie zawartość głównych składników powietrza zmienia się w niewielkim stopniu – zwane są one składnikami stałymi; zawartość niektórych składników zmienia się – zwane są one składnikami zmiennymi.

Objętościowy skład czystego suchego powietrza w troposferze
do wysokości 13 km ponad powierzchnią Ziemi
Składnik % ppm
azot 78,084    780 840    
tlen 20,946    209 460    
argon 0,934    9340    
dwutlenek węgla 0,0411   411    
neon 0,00181  18,18 
hel 0,00052  5,24 
metan 0,00017  1,70 
krypton 0,00011  1,14 
wodór 0,00005  0,50 
ksenon 0,000008 0,087

Zawartość dwutlenku węgla wykazuje zmienność (patrz: dwutlenek węgla w atmosferze Ziemi). Jest monitorowana m.in. przez Mauna Loa Observatory(inne języki).

Ponadto powietrze zawiera parę wodną, przy czym jej zawartość silnie zmienia się z wysokością nad powierzchnią Ziemi, czasem, temperaturą, nasłonecznieniem itd. Przy powierzchni waha się w granicach 0,5–4,0%.

Inne składniki zmienne:

(różne, w zależności od położenia geograficznego, rozwoju przemysłu (głównie ciężkiego), pory roku i innych sytuacji, np. erupcji wulkanu)

Zawiesiny

Suche powietrze ma średnią masę molową 28,97 g/mol.

Wilgotność

Powietrze zawiera różną, zależną od warunków otoczenia, ilość pary wodnej. Zawartość pary wodnej w powietrzu jest zależna od wielu czynników i zmienia się w zakresie 0–4%.

Do oceny stopnia wilgotności powietrza stosuje się dwie wielkości:

  • wilgotność bezwzględną, określającą ilość wody w gramach zawartej w 1 m³ powietrza, przy określonym jego ciśnieniu i temperaturze (zwykle są to warunki normalne fizyczne lub techniczne);
  • wilgotność względną, określającą stosunek ilości pary wodnej zawartej w 1 m³ powietrza, przy określonym ciśnieniu i temperaturze, do ilości pary wodnej nasyconej w tej samej temperaturze i ciśnieniu powietrza. Stosunek ten podaje się w procentach lub w postaci ułamka.

Powietrze w technice

Sprężone powietrze wykorzystywane jest jako nośnik energii. W pneumatyce przygotowanie sprężonego powietrza, realizowane w specjalnych urządzeniach (elementach), polega na:

  • usunięciu z niego zanieczyszczeń,
  • redukcji ciśnienia do wymaganego poziomu,
  • wprowadzeniu czynnika smarnego (dla mechanizmów, które tego wymagają).

Powietrze oczyszczone powinno charakteryzować się:

  • brakiem wody w postaci kropel; woda w postaci pary jest dopuszczalna, gdy punkt rosy występuje przy temperaturze niższej o 5–10 °C od najniższej temperatury pracy układu napędowego;
  • zanieczyszczeniami mechanicznymi poniżej 5 mikrometrów, przy udziale wagowym do 0,7 mg/m³ w warunkach normalnych fizycznych;
  • niewystępowaniem olejów oraz innych cieczy w postaci kropel. Konstruktor i użytkownik urządzeń pneumatycznych, znając najniższe temperatury w nich występujące, powinien ocenić, czy przy danej wilgotności powietrza zasilającego może wystąpić szkodliwe skraplanie się wody zawartej w postaci pary w sprężonym powietrzu (tzn. czy zostanie osiągnięty punkt rosy).

Aby zapewnić prawidłową pracę urządzeń pneumatycznych, należy tak osuszać zasilające je powietrze, żeby jego wilgotność względna w najniższej temperaturze pracy nie przekroczyła 80%. Powietrze opuszczające stację kompresorową ma zwykle temperaturę o 10–15 °C wyższą od temperatury otoczenia. Podczas stygnięcia powietrza w instalacji pneumatycznej następuje skroplenie się pary wodnej. Aby skroplona woda nie dostawała się do instalacji sprężonego powietrza, stosuje się urządzenia osuszające sprężone powietrze.

Zobacz też

Przypisy

  1. powietrze, Encyklopedia PWN .
  2. atmosfera ziemska, Encyklopedia PWN .
  3. Powietrze dostępne np. w butlach ciśnieniowych jako preparat chemiczny „powietrze syntetyczne” zawiera 20% tlenu i 80% azotu; zob. Powietrze syntetyczne. Karta preparatu chemicznego . www.linde-gaz.pl, 2007-12-18. . (pol.).
  4. Giovanni Reale: Historia filozofii starożytnej. T. 1. Lublin: Wydawnictwo KUL, 1994, s. 172.
  5. Tjeerd H. van Andel: Nowe spojrzenie na starą planetę. Zmienne oblicze Ziemi. Warszawa: Wydawnictwo Naukowe PWN, 1997.
  6. Systemy ochrony powietrza, M. Mazur, Uczelniane Wydawnictwa Naukowo-Dydaktyczne, Kraków.
  7. Trends in Atmospheric Carbon Dioxide. NOAA Research News . The Office of Oceanic and Atmospheric Research (OAR), 2019-05-06. . (ang.).
  8. Mauna Loa Observatory. Earth System Research Laboratory (ESRL), Global Monitoring Division; National Oceanic and Atmospheric Administration (NOAA) . NOAA. . (ang.).