Střední doba života

Dnes se ponoříme do fascinujícího světa Střední doba života. Toto téma bylo v průběhu historie předmětem studia, debat a úvah, které ovlivnilo různé aspekty společnosti. Od svého vzniku spustil Střední doba života řadu významných transformací ve sféře _var2, které vyvolaly obdiv i kontroverzi. Prostřednictvím tohoto článku prozkoumáme do hloubky různé aspekty související s Střední doba života, od jeho vzniku až po jeho současný dopad, s cílem poskytnout komplexní a obohacující vizi tohoto tématu, které je dnes tak aktuální.

Tento článek je o fyzikální veličině. O délce dožití jako statistickém údaji o populaci pojednává článek Střední délka života.

Střední doba života (obvykle značená řeckým písmenem τ) je fyzikální veličina charakterizující čas setrvání dané entity v nestabilním stavu. Entitou může být nestabilní elementární částice, atomové jádro radioaktivního nuklidu, nestabilní energetický stav atomu apod.

Střední doba života je pro exponenciální přeměnu rovna převrácené hodnotě přeměnové konstanty a je přímo úměrná poločasu přeměny.

Udává se jako důležitá charakteristika elementárních částic.

Značení a jednotky

Doporučené značení střední doby života je .

Protože se jedná o čas, je hlavní jednotkou soustavy SI sekunda, značka „s“.

Vzhledem k velmi rychlému rozpadu některých částic se často používají i dekadické díly této jednotky, zejména milisekunda „ms“ a nanosekunda „ns“.

Naopak vzhledem k dlouhým dobám života některých radioaktivního nuklidů se někdy používají i vedlejší jednotky hodina „h“ a den „d“, v případech kdy se nejedná o přesnost i mimosoustavová jednotka rok (nejednoznačně stanovená, nemá jednotnou mezinárodní značku – obvykle značená „r“ z českého rok nebo „a“ z latinského annus, případně „y“ či „yr“ z anglického year).

Definice a výpočet

Střední doba života je definována jako střední doba, za niž dojde k přeměně dané entity (částice, energetického stavu apod.). Matematicky ji lze vyjádřit vztahem:

, kde značí čas, počet entit daného statistického souboru, které se přemění za dobu .

Střední doba života u exponenciální přeměny

Pro exponenciální přeměnu, pro kterou je úbytek počtu entit dán vztahem

,

se lze prostým dosazením do definičního vztahu přesvědčit, že platí:

, kde je tzv. přeměnová konstanta, u radioaktivního rozpadu zvaná rozpadová konstanta.

Dosazením střední doby života za čas ve vztahu pro exponenciální přeměnu lze získat názornou interpretaci střední doby života:

Střední doba života (pro exponenciální přeměnu) je doba, za kterou poklesne v daném statistickém souboru počet entit na -násobek původního počtu, e je Eulerovo číslo.

Příbuzné veličiny

Poločas přeměny

Poločas přeměny (doporučené značení T½) je střední doba, za níž dojde v daném statistickém souboru k přeměně poloviny entit. Pro exponenciální přeměnu je přímo úměrná střední době života podle vztahu:

.

Šířka energetického stavu

Šířka energetického stavu (též šířka energetické hladiny, doporučené značení Γ) je mírou intervalu energií, které nabývá daný nestabilní kvantový systém v daném energetickém stavu (mírou neurčitosti energie dané energetické hladiny).

Tato veličina je založena na relaci neurčitosti pro určení energie a charakteristického času a je definována vztahem:

, kde je redukovaná Planckova konstanta.

Používá se místo střední doby života např. v případech, kdy přeměna probíhá vlivem silné jaderné interakce a střední doba života je extrémně krátká – tedy např. jako charakteristika tzv. rezonancí.

Šířka energetického stavu má rozměr energie a jako její jednotka se zpravidla používá elektronvolt nebo jeho násobky (keV, MeV, GeV).

Charakteristiky jiných průběhů přeměn

Následující tabulka udává střední dobu života a poločas přeměny pro různé charakteristické průběhy počtu entit v souboru (rychlost úbytku entit je dána významnými rozděleními pravděpodobnosti).

průběh úbytku entit funkce počtu entit
střední doba života
poločas přeměny
exponenciální
normální [pozn. 1]
log-normální [pozn. 1]
Weibullův [pozn. 2]
[pozn. 3][pozn. 2]
logistický
log-logistický

Poznámky

  1. a b
  2. a b

Reference

  1. a b c ČSN ISO 31-9 Veličiny a jednotky – Část 9: Atomová a jaderná fyzika. Český normalizační institut, Praha 1996

Související články