In diesem Artikel werden wir die faszinierende Welt von Robinson-Arithmetik und alle Auswirkungen erkunden, die es auf unsere heutige Gesellschaft hat. Von seinen Auswirkungen auf das Alltagsleben bis hin zu seiner Relevanz im beruflichen Bereich hat sich Robinson-Arithmetik als Thema von wachsendem Interesse für Menschen aller Altersgruppen und Berufe erwiesen. Auf diesen Seiten werden wir uns mit den Ursprüngen, der Entwicklung und den Zukunftsperspektiven von Robinson-Arithmetik befassen, um seine Bedeutung im aktuellen Kontext besser zu verstehen. Darüber hinaus werden wir die verschiedenen Ansätze und Meinungen rund um Robinson-Arithmetik analysieren, mit dem Ziel, eine umfassende und bereichernde Sicht auf dieses heute so relevante Thema zu bieten. Begleiten Sie uns auf dieser Entdeckungs- und Reflexionsreise über Robinson-Arithmetik!
Die Robinson-Arithmetik (auch: Q) ist ein endlich axiomatisiertes Fragment der Peano-Arithmetik, eines Axiomensystems der Arithmetik, also der natürlichen Zahlen, innerhalb der Prädikatenlogik erster Stufe. Sie wurde 1950 von Raphael Robinson eingeführt und entspricht im Wesentlichen der Peano-Arithmetik ohne das Axiomenschema der Induktion. Die Bedeutung der Robinson-Arithmetik rührt daher, dass sie endlich axiomatisierbar, aber nicht rekursiv vervollständigbar ist und sogar wesentlich unentscheidbar ist. Dies bedeutet, dass es keine konsistente entscheidbare Erweiterung der Robinson-Arithmetik gibt. Es gibt damit insbesondere auch keine vollständige rekursiv aufzählbare Erweiterung, da diese bereits rekursiv (entscheidbar) wäre.[1]
Die Robinson-Arithmetik ist formuliert in der Prädikatenlogik erster Stufe mit Gleichheit, repräsentiert durch das Prädikat . Ihre Sprache hat die Konstante (genannt Null), die Nachfolgerfunktion (für successor: Nachfolger), welche intuitiv zu einer gegebenen Zahl 1 addiert, sowie die Funktionen für Addition und für Multiplikation. Sie hat folgende Axiome, die elementare Eigenschaften der natürlichen Zahlen und der arithmetischen Operationen formalisieren:[2]
Die Robinson-Arithmetik spielt insbesondere beim Beweis des ersten Gödelschen Unvollständigkeitssatzes eine Rolle, da sich innerhalb von Q und ebenso in konsistenten axiomatischen Erweiterungen von Q die Beziehung „… ist ein Beweis der Formel …“ repräsentieren lässt.[3]
Dabei bedeutet Repräsentierbarkeit eines Prädikats , dass es eine Formel gibt, so dass für alle natürlichen Zahlen gilt:
Der Term ist dabei wie folgt definiert:
Das zugehörige Beweisbarkeitsprädikat „… ist beweisbar“ (d. h. „es gibt ein , das ein Beweis der Formel … ist“) ist nicht in Q repräsentierbar, weil keine seiner negativen Instanzen („die Formel … ist nicht beweisbar“) in Q beweisbar ist. Es kann jedoch durch eine Σ1-Formel ausgedrückt werden, und daher folgt aus der Σ1-Vollständigkeit von Q,[6] dass jede seiner positiven Instanzen beweisbar ist. Unter Σ1-Vollständigkeit ist hier zu verstehen, dass jede Σ1-Aussage (der Sprache von Q), die für die natürlichen Zahlen gilt, auch in Q beweisbar ist.[7]
Q ist bereits in relativ schwachen Subtheorien von ZFC interpretierbar, etwa im sogenannten Tarski-Fragment TF,[8] das nur aus folgenden drei Axiomen besteht: dem Extensionalitätsaxiom (auch Axiom der Bestimmtheit), dem Leermengenaxiom (auch Nullmengenaxiom: die leere Menge existiert) und dem Axiom, welches für zwei Mengen , die Existenz der adjungierten Menge fordert.