Tu banner alternativo

Active metabolite

In this article we are going to talk about Active metabolite and its impact on modern society. Active metabolite is a topic of great relevance today and has generated constant debate in various spheres. Since its appearance, Active metabolite has sparked the interest of experts and fans alike, generating endless opinions and theories that seek to give it meaning and understanding. Over the years, Active metabolite has been the subject of studies, research and analysis that seek to decipher its true meaning and the implications it has on everyday life. In this article we will explore different perspectives on Active metabolite and its role in the contemporary world, analyzing its many facets and how it has shaped the reality in which we live.

Tu banner alternativo

An active metabolite, or pharmacologically active metabolite is a biologically active metabolite of a xenobiotic substance, such as a drug or environmental chemical. Active metabolites may produce therapeutic effects, as well as harmful effects.[1]

Metabolites of drugs

An active metabolite results when a drug is metabolized by the body into a modified form which produces effects in the body. Usually these effects are similar to those of the parent drug but weaker,[citation needed] although they can still be significant (see e.g. 11-hydroxy-THC, morphine-6-glucuronide). Certain drugs such as codeine and tramadol have metabolites (morphine and O-desmethyltramadol respectively) that are stronger than the parent drug[2][3][4] and in these cases the metabolite may be responsible for much of the therapeutic action of the parent drug. Sometimes, however, metabolites may produce toxic effects and patients must be monitored carefully to ensure they do not build up in the body. This is an issue with some well-known drugs, such as pethidine (meperidine) and dextropropoxyphene.[4][5]

Prodrugs

Sometimes drugs are formulated in an inactive form that is designed to break down inside the body to form the active drug. These are called prodrugs. The reasons for this type of formulation may be because the drug is more stable during manufacture and storage as the prodrug form, or because the prodrug is better absorbed by the body or has superior pharmacokinetics (e.g., lisdexamphetamine).[6]

References

  1. ^ Fura, Aberra (February 2006). "Role of pharmacologically active metabolites in drug discovery and development". Drug Discovery Today. 11 (3–4): 133–142. doi:10.1016/S1359-6446(05)03681-0. PMID 16533711.
  2. ^ Haffen E, Paintaud G, Berard M, Masuyer C, Bechtel Y, Bechtel PR (June 2000). "On the assessment of drug metabolism by assays of codeine and its main metabolites". Therapeutic Drug Monitoring. 22 (3): 258–65. doi:10.1097/00007691-200006000-00005. PMID 10850391.
  3. ^ Raffa RB (July 1996). "A novel approach to the pharmacology of analgesics". The American Journal of Medicine. 101 (1A): 40S – 46S. doi:10.1016/s0002-9343(96)00137-4. PMID 8764759.
  4. ^ a b Zhou SF, Zhou ZW, Yang LP, Cai JP (2009). "Substrates, inducers, inhibitors and structure-activity relationships of human Cytochrome P450 2C9 and implications in drug development". Current Medicinal Chemistry. 16 (27): 3480–675. doi:10.2174/092986709789057635. PMID 19515014.
  5. ^ Coller JK, Christrup LL, Somogyi AA (February 2009). "Role of active metabolites in the use of opioids". European Journal of Clinical Pharmacology. 65 (2): 121–39. doi:10.1007/s00228-008-0570-y. PMID 18958460. S2CID 9977741.
  6. ^ Müller CE (November 2009). "Prodrug approaches for enhancing the bioavailability of drugs with low solubility". Chemistry & Biodiversity. 6 (11): 2071–83. doi:10.1002/cbdv.200900114. PMID 19937841. S2CID 32513471.

Further reading