In this article, we will explore the fascinating world of Axiomatic quantum field theory. From its origins to its evolution today, this topic has been the subject of constant interest by researchers, academics and enthusiasts. Axiomatic quantum field theory has impacted various areas of society in multiple ways, from politics and economics to popular culture and entertainment. Along these lines, we will delve into the different aspects that make Axiomatic quantum field theory such a relevant topic today and its role in shaping the contemporary world.
Axiomatic quantum field theory is a mathematical discipline which aims to describe quantum field theory in terms of rigorous axioms. It is strongly associated with functional analysis and operator algebras, but has also been studied in recent years from a more geometric and functorial perspective.
There are two main challenges in this discipline. First, one must propose a set of axioms which describe the general properties of any mathematical object that deserves to be called a "quantum field theory". Then, one gives rigorous mathematical constructions of examples satisfying these axioms.
The first set of axioms for quantum field theories, known as the Wightman axioms, were proposed by Arthur Wightman in the early 1950s. These axioms attempt to describe QFTs on flat Minkowski spacetime by regarding quantum fields as operator-valued distributions acting on a Hilbert space. In practice, one often uses the Wightman reconstruction theorem, which guarantees that the operator-valued distributions and the Hilbert space can be recovered from the collection of correlation functions.
The correlation functions of a QFT satisfying the Wightman axioms often can be analytically continued from Lorentz signature to Euclidean signature. (Crudely, one replaces the time variable with imaginary time the factors of change the sign of the time-time components of the metric tensor.) The resulting functions are called Schwinger functions. For the Schwinger functions there is a list of conditions — analyticity, permutation symmetry, Euclidean covariance, and reflection positivity — which a set of functions defined on various powers of Euclidean space-time must satisfy in order to be the analytic continuation of the set of correlation functions of a QFT satisfying the Wightman axioms.
The Haag–Kastler axioms axiomatize QFT in terms of nets of algebras.
These axioms (see e.g.[1]) are used in the conformal bootstrap approach to conformal field theory in . They are also referred to as Euclidean bootstrap axioms.