In this article, we will explore the fascinating world of Lauricella hypergeometric series. From its origin to its evolution over time, we will delve into its meaning, its importance and its impact on today's society. We will analyze its different facets, from its relevance in the scientific field to its influence on popular culture. Through a multidisciplinary approach, we will highlight the diverse perspectives that exist around Lauricella hypergeometric series, offering a comprehensive and enriching vision. Thus, we will discover how Lauricella hypergeometric series has marked a milestone in history and remains a topic of study and debate today.
Well defined hypergeometric series discovered by Giuseppe Lauricella
for |x1| < 1, |x2| < 1, |x3| < 1. Here the Pochhammer symbol (q)i indicates the i-th rising factorial of q, i.e.
where the second equality is true for all complex except .
These functions can be extended to other values of the variables x1, x2, x3 by means of analytic continuation.
Lauricella also indicated the existence of ten other hypergeometric functions of three variables. These were named FE, FF, ..., FT and studied by Shanti Saran in 1954 (Saran 1954). There are therefore a total of 14 Lauricella–Saran hypergeometric functions.
Generalization to n variables
These functions can be straightforwardly extended to n variables. One writes for example
where |x1| + ... + |xn| < 1. These generalized series too are sometimes referred to as Lauricella functions.
In analogy with Appell's function F1, Lauricella's FD can be written as a one-dimensional Euler-type integral for any number n of variables:
This representation can be easily verified by means of Taylor expansion of the integrand, followed by termwise integration. The representation implies that the incomplete elliptic integral Π is a special case of Lauricella's function FD with three variables:
^Tan, J.; Zhou, P. (2005). "On the finite sum representations of the Lauricella functions FD". Advances in Computational Mathematics. 23 (4): 333–351. doi:10.1007/s10444-004-1838-0. S2CID7515235.
Srivastava, Hari M.; Karlsson, Per W. (1985). Multiple Gaussian hypergeometric series. Mathematics and its applications. Chichester, UK: Halsted Press, Ellis Horwood Ltd. ISBN0-470-20100-2. MR0834385. (there is another edition with ISBN0-85312-602-X)