Tu banner alternativo

Monadic Boolean algebra

In today's article we are going to delve into the exciting world of Monadic Boolean algebra. Whatever your interest in this topic, whether due to its historical relevance, its impact on current society or its influence on different areas of study, we are sure that you will find fascinating information. We will address key aspects of Monadic Boolean algebra, from its origin to its evolution over the years, in addition to analyzing its importance today. It doesn't matter if you're an expert in Monadic Boolean algebra or just getting started, this article has something for everyone. Get ready to discover everything you need to know about Monadic Boolean algebra!

Tu banner alternativo

In abstract algebra, a monadic Boolean algebra is an algebraic structure A with signature

⟨·, +, ', 0, 1, ∃⟩ of type ⟨2,2,1,0,0,1⟩,

where ⟨A, ·, +, ', 0, 1⟩ is a Boolean algebra.

The monadic/unary operator ∃ denotes the existential quantifier, which satisfies the identities (using the received prefix notation for ∃):

  • ∃0 = 0
  • xx
  • ∃(x + y) = ∃x + ∃y
  • xy = ∃(xy).

x is the existential closure of x. Dual to ∃ is the unary operator ∀, the universal quantifier, defined as x := (∃x).

A monadic Boolean algebra has a dual definition and notation that take ∀ as primitive and ∃ as defined, so that x := (∀x). (Compare this with the definition of the dual Boolean algebra.) Hence, with this notation, an algebra A has signature ⟨·, +, ', 0, 1, ∀⟩, with ⟨A, ·, +, ', 0, 1⟩ a Boolean algebra, as before. Moreover, ∀ satisfies the following dualized version of the above identities:

  1. ∀1 = 1
  2. xx
  3. ∀(xy) = ∀xy
  4. x + ∀y = ∀(x + ∀y).

x is the universal closure of x.

Discussion

Monadic Boolean algebras have an important connection to topology. If ∀ is interpreted as the interior operator of topology, (1)–(3) above plus the axiom ∀(∀x) = ∀x make up the axioms for an interior algebra. But ∀(∀x) = ∀x can be proved from (1)–(4). Moreover, an alternative axiomatization of monadic Boolean algebras consists of the (reinterpreted) axioms for an interior algebra, plus ∀(∀x)' = (∀x)' (Halmos 1962: 22). Hence monadic Boolean algebras are the semisimple interior/closure algebras such that:

  • The universal (dually, existential) quantifier interprets the interior (closure) operator;
  • All open (or closed) elements are also clopen.

A more concise axiomatization of monadic Boolean algebra is (1) and (2) above, plus ∀(x∨∀y) = ∀x∨∀y (Halmos 1962: 21). This axiomatization obscures the connection to topology.

Monadic Boolean algebras form a variety. They are to monadic predicate logic what Boolean algebras are to propositional logic, and what polyadic algebras are to first-order logic. Paul Halmos discovered monadic Boolean algebras while working on polyadic algebras; Halmos (1962) reprints the relevant papers. Halmos and Givant (1998) includes an undergraduate treatment of monadic Boolean algebra.

Monadic Boolean algebras also have an important connection to modal logic. Monadic Boolean algebras are models of the modal logic S5 in the same way that interior algebras are models of the modal logic S4. That is, monadic Boolean algebras supply the algebraic semantics for S5. Hence S5-algebra is a synonym for monadic Boolean algebra.

See also

References

  • Paul Halmos, 1962. Algebraic Logic. New York: Chelsea.
  • ------ and Steven Givant, 1998. Logic as Algebra. Mathematical Association of America.