The topic of Phosphanide is an issue that has captured the interest and attention of many people around the world. Whether due to its impact on society, its historical relevance or its meaning in daily life, Phosphanide has generated debates, investigations and even controversies. In this article, we will explore different aspects and perspectives related to Phosphanide, with the aim of providing a broad and complete overview on this topic. From its origin to its current implications, including its influence on popular culture, we will examine in depth how Phosphanide has left an indelible mark on history and the collective consciousness.
| Identifiers | |
|---|---|
3D model (JSmol)
|
|
| ChEBI | |
| ChemSpider | |
| 284 | |
PubChem CID
|
|
CompTox Dashboard (EPA)
|
|
| |
| Properties | |
| H2P− | |
| Molar mass | 32.990 g·mol−1 |
Except where otherwise noted, data are given for materials in their standard state (at 25 °C , 100 kPa).
| |
Phosphanides are chemicals containing the − anion. This is also known as the phosphino anion or phosphido ligand. The IUPAC name can also be dihydridophosphate(1−).[1]
It can occur as a group phosphanyl -PH2 in organic compounds or ligand called phosphanido, or dihydridophosphato(1−). A related substance has PH2−. Phosphinidene (PH) has phosphorus in a −1 oxidation state.[2]
As a ligand PH2 can either bond to one atom or be in a μ2-bridged ligand across two metal atoms.[3] With transition metals and actinides, bridging is likely unless the metal atom is mostly enclosed in a ligand.
In phosphanides, phosphorus is in the −3 oxidation state. When phosphanide is oxidised, the first step is phosphinite (−). Further oxidation yields phosphonite (2−) and phosphite (3−).[4]
The study of phosphine derivatives is unpopular, because they are unstable, poisonous and malodorous.[5]
Alkali metal phosphanides can be made from phosphine and the metal dissolved in liquid ammonia. Sodium phosphanide can also be made from phosphine and triphenylmethyl sodium. Lithium phospahnide can be made from phosphine and butyl lithium or phenyl lithium.[3]
Another way to produce -PH2 complexes is by hydrolysis of a -P(SiMe3)2 compound with an alcohol, such as methanol.[3]
Yet another way is to remove a hydrogen atom from the phosphine in a phosphine complex by using a strong base.[3]
When calcium phosphanide is heated, it decomposes by releasing phosphine and yielding the phosphanediide: CaPH. With further heating a binary calcium phosphide is formed.[4] Other compounds may also lose hydrogen as well as phosphine.[6]
Phosphanides can react with CCl4 to substitute Cl for H giving a -PCl2 compound. Similarly CBr4 can produce -PBr2. Also AgBF4 can react to yield -PF2.[7]
Sodium phosphanide can react with ethyl alcohol in a diethyl carbonate solution to yield sodium 2-phosphaethynolate (NaOCP). Na(DME)2OCP is also formed from NaPH2 when reacted with CO in a dimethoxyethane (DME) solution under pressure.[8]
| name | formula | system | space group | unit cell Å | volume | density | M-P Å | comment | ref |
|---|---|---|---|---|---|---|---|---|---|
| lithium phosphanide | LiPH2 | ||||||||
| Bis(1,2-dimethoxyethane-O,O′)lithium-phosphanide | (dme)2LiPH2 | monoclinic | a=13.911 b=8.098 c=12.491 β=103.35° | 1371.9 | 1.07 | [9] | |||
| Li(PH2)(BEt3)2 | [10] | ||||||||
| LiPH2(BH3)2(THF)2 | [10] | ||||||||
| sodium dihydrogenphosphide | NaPH2 | [3] | |||||||
| Na13(PH2)(OtBu)12 | [3] | ||||||||
| tetraphosphanylsilane | Si(PH2)4 | [11] | |||||||
| KPH2 | [3] | ||||||||
| Ca(PH2)2•6NH3 | [4] | ||||||||
| Ca(PH2)2•2NH3 | [4] | ||||||||
| Cp2(CO)4Cr2(μ-PH2)(μ-H) | [12] | ||||||||
| Cp2(CO)4Cr2(μ-PH2)2 | [12] | ||||||||
| 2 | orthorhombic | Cmca | a =12.2545 b =11.5949 c=9.7196 | [13] | |||||
| (CO)4Cr(μ-PH2)2Cr(CO)3(PH3) | triclinic | P1 | a=7.008 b=7.430 c=8.871, α =111.05° β=92.73° γ=114.08° | [13] | |||||
| Mn(PH2)2 · 3 NH3 | [14] | ||||||||
| K2 · 2 NH3 | [14] | ||||||||
| 2 | triclinic | P1 | a = 6.804, b = 7.064, c = 9.191, α =110.5°, β = 91.92°, γ =115.65°, Z = 1 | [7][15] | |||||
| (μ-PH2)2 · Mn2(CO8) + (μ-Br)(μ-PH2)Mn2(CO8) | monoclinic | P21/c | a = 9.467, b = 12.181, c = 13.086, β = 109.98° | 1418.2 | [16] | ||||
| 3 | monoclinic | P2/n | a = 9.052, b = 9.748, c = 12.642, β = 109.1°, Z = 2 | [17][15] | |||||
| (μ-Br)(μ-PH2)Mn2(CO8) | [16] | ||||||||
| 2 | monoclinic | P21/m | a =6.2476 b =12.982 c =7.2193 β =90.14° | [13] | |||||
| Cp(CO)2Fe(μ-PH2)Fe(CO)4 | [3] | ||||||||
| bis((ethane-1,2-diyl)bis(dimethylphosphine))-(hydrido)-(dihydridophosphide)-iron | Fe(dmpe)2(H)PH2 | triclinic | P1 | a=9.2246 b=12.4638 c=17.3198 α=89.872° β=88.482° γ=89.228° | [18] | ||||
| Co(PH2)3 | [3][6] | ||||||||
| KCo2(PH2)7 | [3][6] | ||||||||
| cp(CO)2Fe(μ-PH2)Fe(CO)4 | monoclinic | P21/c | a = 7.336, b = 10.898, c = 17.616, β = 99.65°, Z = 4 | 2.29, 2.265 | [17] | ||||
| cp(CO)2Fe(μ-PH2)Fe(CO)(NO)2 | [19] | ||||||||
| cp(CO)2Fe(μ-PH2)Vcp(CO)3 | [19] | ||||||||
| cp(CO)2Fe(μ-PH2)Crcp(CO)(NO) | [19] | ||||||||
| cp(CO)2Fe(μ-PH2)Cr(CO)5 | [19] | ||||||||
| cp(CO)Fe(μ-CO, μ-PH2)Crcp(NO) | [19] | ||||||||
| cp(CO)2Fe(μ-PH2)MnMecp(CO)2 | monoclinic | P21 | a = 7.501, b = 22.345, c = 9.741, β = 106.23°, Z = 4 | [19][20] | |||||
| cp(CO)2Fe(μ-PH2)Mn(NO)3 | [19] | ||||||||
| cp(CO)2Fe(μ-PH2)Mncp(CO)2 | [19] | ||||||||
| cp(CO)Fe(μ-CO, μ-PH2)Mncp(CO) | [19] | ||||||||
| cp(CO)Fe(μ-CO, μ-PH2)MnMecp(CO) | [19] | ||||||||
| (μ2-phosphido)-octacarbonyl-iron-manganese | FeMn(CO)8(μ-PH2) | triclinic | P1 | a=7.8647 b=9.223 c=9.368, α=90.966° β=91.141° γ=110.032° | [21] | ||||
| Li+− | [21] | ||||||||
| Na+− | [21] | ||||||||
| K+− | [21] | ||||||||
| cp(CO)2Fe(μ-PH2)Co(CO)2(NO) | [19] | ||||||||
| Ni(PH2)2 | [3][22] | ||||||||
| 2 | [23] | ||||||||
| 3 | rhombohedral | R3 | a = 16.861, c = 5.611 Z = 3 | 6 member ring | [24][15] | ||||
| K | orange, green or black | [3][22] | |||||||
| cp(CO)2Fe(μ-PH2)Ni(CO)3 | [17] | ||||||||
| CH{(CMe)(2,6-iPr2C6H3N)}2GeIIPH2 | monoclinic | P21/c | a=14.1380 b=16.3244 c=13.8086 β=116.379 Z=4 | 2855.1 | 1.213 | orange or red | [25] | ||
| 2 | triclinic | P1 | a=10.8175 b=12.0783 c=2.6434 α=91.550 β=108.361 γ=111.339 Z=1 | 1441.49 | 1.203 | red | [25] | ||
| bisphosphanyl yttriate | 2Y(PH2)22Cl | [3] | |||||||
| (N,N',N''-tris(t-butyl(dimethyl)silanamino))-phosphanyl-zirconium(iv) | Zr(TrenDMBS)(PH2) TrenDMBS=N(CH2CH2NSiMe2But)3 | orthorhombic | Pbca | a=19.978 b=15.4052 c=22.721 | Zr−P=2.690 | yellow | [2] | ||
| {Cp(CO)2Mo}2(μ-PH2)(μ-H) | [26][27] | ||||||||
| Mo2Cp2(μ-PH2)2(CO)2 | [28] | ||||||||
| cp(CO)2Fe(μ-PH2)Mo(CO)5 | [19] | ||||||||
| {Cp(CO)2W}2(μ-PH2)(μ-H) | [27] | ||||||||
| W2Cp2(μ-PH2)2(CO)2 | [28] | ||||||||
| 2 | orthorhombic | Cmca | a=12.498 b=12.046 c=10.1185 | [13] | |||||
| 2− | [3] | ||||||||
| (CO)4W(μ-PH2)2W(CO)3(PH3) | a=7.008 b=7.430 c=8.871, α =111.05° β =92.73° γ=114.08° | [13] | |||||||
| (CO)4W(μ-PH2)2W(CO)2(PH3)2 | triclinic | P1 | a=7.014 b=9.386 c=13.632, α=70.15° β=79.82° γ=68.78° | [13] | |||||
| NMe3•H2BPH2••W(CO)5 | [3] | ||||||||
| phosphanylalane | NMe3•H2AlPH2•W(CO)5 | [3] | |||||||
| cp(CO)2Fe(μ-PH2)W(CO)5 | [19] | ||||||||
| phosphanygallane | NMe3•H2GaPH2••W(CO)5 | [3] | |||||||
| Re2(μ-PH2)2(CO)8 | monoclinic | P21/c | a=9.808 b=12.326 c=13.299 β=109.08° Z=4 | 1519.4 | 2.896 | yellow | [29] | ||
| Re2(μ-H) · (μ-PH2)(CO)8 | yellow | [29] | |||||||
| Os(η2-O2CCH3)(PH2)(CO)(PPh3)2 | [30] | ||||||||
| Os(η2-N,N-dimethyldithiocarbamate)(PH2)(CO)(PPh3)2 | [30] | ||||||||
| Os(η2-acetylacetonate)(PH2)(CO)(PPh3)2 | [30] | ||||||||
| Os(η2-NO2)(PH2)(CO)(PPh3)2 | [30] | ||||||||
| OsCl- (PH2)(CO)2(PPh3)2 | [31] | ||||||||
| OsCl- (PH2)(CO)(PPh3)3 | [31] | ||||||||
| 2 | triclinic | P1 | a 14.101, b 15.091, c 11.708, α 96.68, β 91.71, γ 63.92°, Z = 1 | 2222.0 | [31] | ||||
| OsH(PH2)(CO)2(PPh3)2 | [31] | ||||||||
| (μ2-Hydrido)-(μ2-phosphido)-acetonitrilo-henicosacarbonyl-hexa-osmium | Os6(μ-H)(CO)21(NCMe)(μ-PH2) | monoclinic | P21/n | a=11.161 b=12.532 c =26.60, β=90.03° | [32] | ||||
| (μ2-Phosphido)-(μ2-hydrido)-bis(undecacarbonyl-tri-osmium) | Os6(μ-H)(CO)22(μ-PH2) | monoclinic | P21/c | a =14.328 b =16.658 c =15.258, β =103.79° | [32][33] | ||||
| Os6(μ-H)(CO)21(CNBut)(μ-PH2) | [32] | ||||||||
| 3 | [32] | ||||||||
| Ir(CO)ClH(PEt3)2(PH2) | [3] | ||||||||
| Ir(CO)BrH(PEt3)2(PH2) | [3] | ||||||||
| (Acetato-O,O')-(μ2-phosphonito)-carbonyl-iodo-bis(triphenylphosphine)-gold-osmium dichloromethane solvate | Os(η2-O2CCH3)(PH2AuI)(CO)(PPh3)2 · (CH2Cl2)2 | triclinic | P1 | a=12.320 b=13.962 c=14.122, α=96.76° β=101.93° γ=107.72° | [30] | ||||
| phosphanido-(N'-(triisopropylsilyl)-N,N-bis(2-((triisopropylsilyl)amino)ethyl)ethane-1,2-diaminato)-thorium(iv) | Th(TrenTIPS)(PH2) | monoclinic | P21/n | a=18.6189 b=22.6046 c=22.2818 β=113.726° | 2.982 | colourless | [34] | ||
| PH2–UH | 2.762 | in solid argon | [35] | ||||||
| TrenTIPS=N(CH2CH2NSiPri3)3 | U(TrenTIPS)(PH2) | monoclinic | P21/n | a=12.9994 b=16.2006 c=20.3678 β=91.313 Z=4 | 4288.3 | 2.883 | yellow | [36] |
Some derivatives of phosphanides have also been studied where hydrogen is substituted by another group. They include bis(trimethylsilyl)phosphanide, bis (triisopropylsilyl) phosphanide, bis (trimethylsilyl) phosphanide, diphenyl phosphanide.[37][38]
{{cite thesis}}: CS1 maint: multiple names: authors list (link)