In today's world, Plutonium tetrafluoride has become a topic of great relevance and interest to a wide variety of people. Its impact and scope are so significant that they do not go unnoticed in any area. From the academic field, through the work world, to the personal sphere, Plutonium tetrafluoride arouses great interest and debate. As we delve into this topic, we will realize the importance it has in today's society and how its influence has been growing over time. In addition, we will explore its implications, challenges and potential solutions, with the aim of thoroughly understanding this phenomenon and its consequences in our daily lives.
Plutonium(IV) fluoride is a chemical compound with the formula PuF4. This salt is generally a brown solid but can appear a variety of colors depending on the grain size, purity, moisture content, lighting, and presence of contaminants.[4][5] Its primary use in the United States has been as an intermediary product in the production of plutonium metal for nuclear weapons usage.[3]
Formation
Plutonium(IV) fluoride is produced in the reaction between plutonium dioxide (PuO2) or plutonium(III) fluoride (PuF3) with hydrofluoric acid (HF) in a stream of oxygen (O2) at 450 to 600 °C. The main purpose of the oxygen stream is to avoid reduction of the product by hydrogen gas, small amounts of which are often found in HF.[6]
PuO2 + O2 + 4 HF → PuF4 + O2 + 2 H2O
4 PuF3 + O2 + 4 HF → 4 PuF4 + 2 H2O
Laser irradiation of plutonium hexafluoride (PuF6) at wavelengths under 520 nm causes it to decompose into plutonium pentafluoride (PuF5) and fluorine; if this is continued, plutonium(IV) fluoride is obtained.[7]
Properties
In terms of its structure, solid plutonium(IV) fluoride features 8-coordinate Pu centers interconnected by doubly bridging fluoride ligands.[8]
Reaction of plutonium tetrafluoride with barium, calcium, or lithium at 1200 °C gives Pu metal:[4][5][3]
PuF4 + 2 Ba → 2 BaF2 + Pu
PuF4 + 2 Ca → 2 CaF2 + Pu
PuF4 + 4 Li → 4 LiF + Pu
Plutonium tetrafluoride sample with example of one color illustrated through reference to a color standard[9]
References
^
Lide, David R. (1998), Handbook of Chemistry and Physics (87 ed.), Boca Raton, Florida: CRC Press, pp. 4–76, ISBN0-8493-0594-2
^ abBaldwin, Charles E.; Navratil, James D. (1983-05-19). "Plutonium Process Chemistry at Rocky Flats". In Carnall, William T.; Choppin, Gregory R. (eds.). Plutonium Chemistry. ACS Symposium Series. Vol. 216. AMERICAN CHEMICAL SOCIETY. pp. 369–380. doi:10.1021/bk-1983-0216.ch024. ISBN9780841207721.
^ abChristensen, Eldon L.; Grey, Leonard W.; Navratil, James D.; Schulz, Wallace W. (1983-05-19). "Present Status and Future Directions of Plutonium Process Chemistry". In Carnall, William T.; Choppin, Gregory R. (eds.). Plutonium Chemistry. ACS Symposium Series. Vol. 216. AMERICAN CHEMICAL SOCIETY. pp. 349–368. doi:10.1021/bk-1983-0216.ch023. ISBN9780841207721. OSTI6781635.