In this article we will explore the topic of Shikimate pathway in depth, analyzing its different facets and its relevance today. Shikimate pathway is a topic that has captured the attention of experts and society in general, generating passionate debates and arousing great interest. Throughout this article, we will examine its impact in different areas, its implications at a global and local level, as well as the possible solutions and challenges it poses. With a critical and reflective perspective, we seek to provide a comprehensive vision of Shikimate pathway, offering our readers an informed and enriching perspective on this topic of current relevance.
The shikimate pathway (shikimic acid pathway) is a seven-step metabolic pathway used by bacteria, archaea, fungi, algae, some protozoans, and plants for the biosynthesis of folates and aromatic amino acids (tryptophan, phenylalanine, and tyrosine). This pathway is not found in mammals.
The five enzymes involved in the shikimate pathway are 3-dehydroquinate dehydratase, shikimate dehydrogenase, shikimate kinase, EPSP synthase, and chorismate synthase. In bacteria and eurkaryotes, the pathway starts with two substrates, phosphoenol pyruvate and erythrose-4-phosphate, are processed by DAHP synthase and 3-dehydroquinate synthase to form 3-dehydroquinate. In archaea, 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate synthase condenses L-Aspartic-4-semialdehyde with a sugar to form 2-amino-3,7-dideoxy-D-threo-hept-6-ulosonate, which is then turned by 3-dehydroquinate synthase II into 3-dehydroquinate. Both pathways end with chorismate (chrorismic acid), a substrate for the three aromatic amino acids. The fifth enzyme involved is the shikimate kinase, an enzyme that catalyzes the ATP-dependent phosphorylation of shikimate to form shikimate 3-phosphate (shown in the figure below).[1][2] Shikimate 3-phosphate is then coupled with phosphoenol pyruvate to give 5-enolpyruvylshikimate-3-phosphate via the enzyme 5-enolpyruvylshikimate-3-phosphate (EPSP) synthase. Glyphosate, the herbicidal ingredient in Roundup, is an uncompetitive inhibitor of EPSP synthase, acting as a transition state analog that binds more tightly to the EPSPS-S3P complex than PEP and inhibits the shikimate pathway.
Then 5-enolpyruvylshikimate-3-phosphate is transformed into chorismate by a chorismate synthase.
Prephenic acid is then synthesized by a Claisen rearrangement of chorismate by chorismate mutase.[3][4]
Prephenate is oxidatively decarboxylated with retention of the hydroxyl group to give p-hydroxyphenylpyruvate, which is transaminated using glutamate as the nitrogen source to give tyrosine and α-ketoglutarate.