Flavín adenín dinucleótido

Hoy queremos dedicar este espacio a hablar sobre Flavín adenín dinucleótido. Este tema es de gran relevancia en la actualidad y ha captado la atención de muchas personas en diferentes ámbitos. Flavín adenín dinucleótido se ha convertido en un punto de encuentro para discutir, reflexionar y analizar diversas temas, lo cual lo hace un tema sumamente interesante y polifacético. A lo largo de este artículo exploraremos diferentes aspectos relacionados con Flavín adenín dinucleótido, desde su origen hasta su impacto en la sociedad actual. Estamos seguros de que este tema despertará tu curiosidad y te invitará a reflexionar sobre su importancia en tu vida diaria.

 
Flavín adenín dinucleótido
General
Fórmula estructural Imagen de la estructura
Fórmula molecular C27H33P2N9O15
Identificadores
Número CAS 146-14-5
ChEBI 16238
ChEMBL CHEMBL1232653
ChemSpider 559059
DrugBank 03147
PubChem 643975
UNII ZC44YTI8KK
KEGG C00016 D00005, C00016
Propiedades físicas
Masa molar 785,157 g/mol

El flavín adenín dinucleótido o dinucleótido de flavina y adenina (abreviado FAD en su forma oxidada y FADH2 en su forma reducida) es una coenzima que interviene en las reacciones metabólicas de ouuyuxidación-reducción.

Estructura química

El FAD es una molécula compuesta por una unidad de riboflavina (vitamina B2),​ unida a un pirofosfato (PPi), este unido a una ribosa y ésta unida a una adenina. Por tanto, la molécula es en realidad ADP unido a riboflavina; o también AMP unido a la coenzima Flavín mononucleótido o FNDH2

Función

El FAD es una coenzima que interviene como dador o aceptor de electrones y protones (poder reductor) en reacciones metabólicas redox; su estado oxidado (FAD) se reduce a FADH2 al aceptar dos átomos de hidrógeno (cada uno formado por un electrón y un protón), según la siguiente reacción:

Por tanto, al reducirse capta dos protones y dos electrones, lo que lo capacita para intervenir como dador de energía o de poder reductor en el metabolismo. Por ejemplo, el FAD (y también el NAD) se reduce en el ciclo de Krebs y se oxida en la cadena respiratoria (respiración aeróbica).

La función bioquímica general del FAD es oxidar los alcanos a alquenos, mientras que el NAD+ (un coenzima con similar función) oxida los alcoholes a aldehídos o cetonas. Esto se debe a que la oxidación de un alcano (como el succinato) a un alqueno (como el fumarato) es suficientemente exergónica como para reducir el FAD a FADH2, pero no para reducir el NAD+ a NADH.

La reoxidación del FADH2 (es decir, la liberación de los dos electrones y dos protones capturados) tiene lugar en la cadena respiratoria, lo que posibilita la formación de ATP (fosforilación oxidativa).

Muchas oxidorreductasas, denominadas flavoenzimas o flavoproteínas, requieren FAD como coenzima para oxidar los substratos. Pero en el enzima succinato deshidrogenasa, que oxida el succinato a fumarato en el ciclo de Krebs, el FAD es realmente un grupo prostético, ya que está unido fuerte y permanentemente a la enzima mediante un enlace covalente.

Referencias

  1. Número CAS
  2. Nelson, David; Cox, Michael. «Glosario». Lehninger: Principios de Bioquímica. Omega. p. G-7. ISBN 978-84-282-1410-0. 
  3. Merriam Webster. «FAD» (en inglés). Consultado el 12 de marzo de 2012. 
  4. Nelson, David; Cox, Michael (2005). «Otras funciones de los nucleótidos». Lehninger: Principios de Bioquímica. Omega. p. 301. ISBN 978-84-282-1410-0. 
  5. Nelson, David; Cox, Michael (2005). «Reacciones de oxidación-reducción biológicas». Lehninger: Principios de Bioquímica. Omega. p. 515-517. ISBN 978-84-282-1410-0.