Pico (cefalópodos)

En el presente artículo vamos a abordar el tema de Pico (cefalópodos), el cual es de suma importancia en el contexto actual. Pico (cefalópodos) ha sido objeto de debate y análisis en diferentes ámbitos, y su relevancia es innegable en la sociedad actual. Desde diferentes perspectivas y enfoques, Pico (cefalópodos) ha generado interés y reflexión, lo que nos invita a profundizar en su estudio y comprensión. A lo largo de estas líneas, exploraremos diversos aspectos relacionados con Pico (cefalópodos), con el objetivo de brindar una visión integral y enriquecedora sobre este tema.

Pico de un calamar gigante, rodeado por la masa bucal y los apéndices.
Pico de calamar gigante y los músculos asociados (con la mano para apreciar el tamaño).

Todos los cefalópodos existentes tienen una estructura propia del grupo conocida como pico o pico de loro consistente en un par de fuertes mandíbulas en forma de pico, situado en la masa bucal y rodeado por los apéndices musculares de la cabeza (brazos y tentáculos). La mandíbula dorsal (superior) se adapta a la mandíbula ventral (inferior) y juntas funcionan de forma similar a una tijera.

Existen restos de picos fosilizados de varios grupos de cefalópodos, tanto actuales como extintos, como calamares, pulpos, belemnites y vampiromórfidos.​ Una estructura calcárea parecida a placas propia de los amonites, el aptico, puede que hayan sido elementos del pico.

Composición

Compuesto principalmente por quitina y proteínas reticuladas,​ los picos son relativamente indigestos y, a menudo, son los únicos restos de cefalópodos identificables que se encuentran en los estómagos de especies depredadoras como los cachalotes.​ Los picos de los cefalópodos se vuelven gradualmente menos rígidos a medida que nos desplazamos desde la punta hasta la base, un gradiente debido a una composición química diferente; en los picos del calamar de Humboldt (Dosidicus gigas) este gradiente de rigidez alcanza dos órdenes de magnitud.

Medidas

En teutología (ciencia que se dedica al estudios de los cefalópodos), se utilizan las abreviaturas LRL (Lower Rostral Lenght) y URL (Upper Rostral Length) para referirse respectivamente a la longitud rostral inferior y la longitud rostral superior. Estas son las medidas estándar del tamaño del pico en Decapodiformes; para Octopodiformes se suele utilizar la longitud de la cubierta (Hood Length).​ Se pueden utilizar para estimar la longitud del manto y el peso corporal total del animal original, así como la biomasa total ingerida de las especies.

Referencias

  1. Young, R. E.; Vecchione, M.; Mangold, K. M. (1999). «Cephalopoda Glossary». Tree of Life Web Project. Consultado el 7 de agosto de 2018. 
  2. Young, R. E.; Vecchione, M.; Mangold, K. M. (2000). «Cephalopod Beak Terminology». Tree of Life Web Project. Archivado desde el original el 9 de diciembre de 2018. Consultado el 7 de agosto de 2018. 
  3. a b Tanabe, K.; Hikida nombre3=Y., Y.; Iba (2006). «Two coleoid jaws from the Upper Cretaceous of Hokkaido, Japan». Journal of Paleontology 80 (1): 138-145. doi:10.1666/0022-3360(2006)080[0138:TCJFTU]2.0.CO;2. 
  4. Lorenzo Corchón. Cefalópodos. «Moluscos». Asturnatura. Consultado el 26 de noviembre de 2023. 
  5. Zakharov, Y. D.; Lominadze, T. A. (1983). New data on the jaw apparatus of fossil cephalopods. Lethaia 16 (1). pp. 67-78. doi:10.1111/j.1502-3931.1983.tb02000.x. 
  6. Kanie, Y. (1998). «New vampyromorph (Coleoidea: Cephalopoda) jaw apparatuses from the Late Cretaceous of Japan». Bulletin of Gumma Museum of Natural History 2: 23-34. ISSN 1342-4092. 
  7. Tanabe, K.; Landman, N. H. (2002). «Morphological diversity of the jaws of Cretaceous Ammonoidea». Abhandlungen der Geologischen Bundesanstalt, Wien 57: 157-165. 
  8. Tanabe, K.; Trask, P.; Ross, R.; Hikida, Y. (2008). «Late Cretaceous octobrachiate coleoid lower jaws from the north Pacific regions». Journal of Paleontology 82 (2): 398-408. doi:10.1666/07-029.1. 
  9. Klug, C.; Schweigert, G.; Fuchs, D.; Dietl, G. (2010). «First record of a belemnite preserved with beaks, arms and ink sac from the Nusplingen Lithographic Limestone (Kimmeridgian, SW Germany)». Lethaia 43 (4): 445-456. doi:10.1111/j.1502-3931.2009.00203.x. 
  10. Tanabe, K. (2012). «Comparative morphology of modern and fossil coleoid jaw apparatuses». Neues Jahrbuch für Geologie und Paläontologie, Abhandlungen 266 (1): 9-18. doi:10.1127/0077-7749/2012/0243. 
  11. Morton, N. (1981). «Aptychi: the myth of the ammonite operculum». Lethaia 14 (1): 57-61. doi:10.1111/j.1502-3931.1981.tb01074.x. 
  12. Morton, N.; Nixon, M. (1987). «Size and function of ammonite aptychi in comparison with buccal masses of modem cephalopods». Lethaia 20 (3): 231-238. doi:10.1111/j.1502-3931.1987.tb02043.x. 
  13. Lehmann, U.; Kulicki, C. (1990). «Double function of aptychi (Ammonoidea) as jaw elements and opercula». Lethaia 23: 325-331. doi:10.1111/j.1502-3931.1990.tb01365.x. 
  14. Seilacher, A. (1993). «Ammonite aptychi; how to transform a jaw into an operculum?». American Journal of Science 293: 20-32. doi:10.2475/ajs.293.A.20. 
  15. Saunders, W. B.; Spinosa, C.; Teichert, C.; Banks, R. C. (1978). «The jaw apparatus of Recent Nautilus and its palaeontological implications». Palaeontology 21 (1): 129-141. 
  16. Hunt, S.; Nixon, M. (1981). «A comparative study of protein composition in the chitin-protein complexes of the beak, pen, sucker disc, radula and oesophageal cuticle of cephalopods». Comparative Biochemistry and Physiology Part B: Comparative Biochemistry 68 (4): 535-546. doi:10.1016/0305-0491(81)90071-7. 
  17. Miserez, A.; Li, Y.; Waite, J. H.; Zok, F. (2007). «Jumbo squid beaks: Inspiration for design of robust organic composites». Acta Biomaterialia 3 (1): 139-149. doi:10.1016/j.actbio.2006.09.004. Archivado desde el original el 5 de marzo de 2016. Consultado el 7 de agosto de 2018. 
  18. a b Clarke, M. R. (1986). A Handbook for the Identification of Cephalopod Beaks. Oxford University Press. 
  19. Miserez, A.; Schneberk, T.; Sun, C.; Zok, F. W.; Waite, J. H. (2008). «The transition from stiff to compliant materials in squid beaks». Science 319 (5871): 1816-1819. doi:10.1126/science.1154117. 
  20. Clarke, M. R. (1962). «The identification of cephalopod "beaks" and the relationship between beak size and total body weight». Bulletin of the British Museum (Natural History), Zoology 8 (10): 419-480. 
  21. Wolff, G. A. (1981). «A beak key for eight eastern tropical Pacific cephalopod species with relationships between their beak dimensions and size». Fishery Bulletin 80 (2): 357-370. 
  22. Jackson, G. D. (1995). «The use of beaks as tools for biomass estimation in the deepwater squid Moroteuthis ingens (Cephalopoda: Onychoteuthidae) in New Zealand waters». Polar Biology 15 (1): 9-14. doi:10.1007/BF00236118. 
  23. Jackson, G. D.; McKinnon, J. F. (1996). «Beak length analysis of arrow squid Nototodarus sloanii (Cephalopoda: Ommastrephidae) in southern New Zealand waters». Polar Biology 16 (3): 227-230. doi:10.1007/BF02329211. 
  24. Jackson, G. D.; Buxton, N. G.; George, M. J. A. (1997). «Beak length analysis of Moroteuthis ingens (Cephalopoda: Onychoteuthidae) from the Falkland Islands region of the Patagonian Shelf». Journal of the Marine Biological Association of the United Kingdom 77 (4): 1235-1238. doi:10.1017/S0025315400038765. 
  25. Gröger, J.; Piatkowski, U.; Heinemann, H. (2000). «Beak length analysis of the Southern Ocean squid Psychroteuthis glacialis (Cephalopoda: Psychroteuthidae) and its use for size and biomass estimation». Polar Biology 23 (1): 70-74. doi:10.1007/s003000050009. 

Enlaces externos