Panspermia

W dzisiejszym świecie Panspermia stał się tematem o dużym znaczeniu i zainteresowaniu szerokiego spektrum ludzi. Wraz z postępem technologii i globalizacją Panspermia staje się coraz ważniejszy we współczesnym społeczeństwie. Niezależnie od tego, czy jest to zjawisko historyczne, wybitna osobowość, aktualny temat czy jakikolwiek inny istotny aspekt, Panspermia przykuł uwagę osób z różnych kultur, grup wiekowych i kontekstów. W tym artykule zbadamy różne perspektywy i aspekty Panspermia, analizując jego wpływ, implikacje i możliwe reperkusje w różnych obszarach.

Panspermia

Panspermia (ze starogr. πᾶν (pan) – wszystko i σπέρμα (sperma) – nasienie) – hipoteza, zgodnie z którą życie rozprzestrzenia się wśród ciał niebieskich dzięki naturalnym procesom, np. poprzez meteoryty. Przykładem panspermii jest hipoteza, że życie na Ziemi nie powstało na niej, ale dostało się na nią w postaci prostych jednokomórkowych organizmów lub ich przetrwalników z innych ciał niebieskich. Początków panspermii można doszukać się u greckiego filozofa Anaksagorasa. W XIX i XX wieku podobne hipotezy wysuwali m.in. J.J. Berzelius w 1834 r., W. Thomson (późniejszy lord Kelvin) w 1871 r. i Svante Arrhenius w 1908 r. W hipotezie Arrheniusa organizmy miały być przenoszone wskutek ciśnienia światła – tzw. radiopanspermia. Ten mechanizm jest jednak skuteczny jedynie dla ciał o rozmiarach rzędu 0,001 mm. Tak małe ciało nie stanowiłoby ochrony przed promieniowaniem kosmicznym. Dlatego obecnie rozważa się przenoszenie organizmów za pośrednictwem meteoroidu, planetoidy lub komety. W szerszym znaczeniu panspermia dotyczy możliwości rozprzestrzeniania się życia w Kosmosie.

Koncepcja panspermii nie wyjaśnia powstania życia, a jedynie wskazuje na możliwość rozprzestrzeniania się życia na różne ciała niebieskie.

Do uczonych propagujących hipotezę panspermii należeli Neil deGrasse Tyson, Francis Crick i Fred Hoyle.

Problematyka

Złożoność organizmów żywych mierzona wielkością funkcjonalnego genomu w zbadanej historii życia na Ziemi rosła wykładniczo. Jeśli ekstrapolować tę tendencję poza pierwsze jednokomórkowce, początek życia wypadałby kilka miliardów lat przed powstaniem Ziemi, co jest argumentem na rzecz teorii panspermii. Inni uczeni wskazują jednak na trudności tej hipotezy.

Największą trudnością hipotezy panspermii jest kwestia przetrwania organizmów żywych w przestrzeni kosmicznej, bez ochronnego wpływu atmosfery. W 1970 roku członkowie wyprawy Apollo 12 przywieźli na Ziemię elementy lądownika Surveyor 3, które znajdowały się na powierzchni Księżyca, w warunkach próżni kosmicznej, przez 2,5 roku. W jednej z kamer odkryto bakterie Streptococcus mitis, które po czterech dniach na pożywce wznowiły funkcje życiowe. Późniejsza analiza sugeruje jednak, że mogło dojść do skażenia w laboratorium. Niezależnie od tego, eksperyment z 2014 roku pokazał, że plazmidy na powierzchni rakiety są w stanie przetrwać lot kosmiczny, a także najbardziej krytyczny moment: wejście w atmosferę. Cząsteczki DNA w dużej części były w stanie funkcjonować, przekazując informację genetyczną.

Udowodniono, że przetrwalniki bakterii potrafią przetrwać w bardzo rozrzedzonej atmosferze na wysokości kilkudziesięciu kilometrów, ponadto że dość niewielkie ilości skały (np. meteoroid) w bardzo dużym stopniu ograniczają negatywne skutki promieniowania występującego w przestrzeni kosmicznej na ich materiał genetyczny. Tak więc mogłyby one teoretycznie przenosić się w meteoroidach i ożywić w korzystnych warunkach na innej planecie.

Badacze z Uniwersytetu Nicejskiego zasugerowali, że przewaga aminokwasów lewoskrętnych w organizmach może być spowodowana kołową polaryzacją światła nowo tworzących się gwiazd, co miałoby potwierdzać hipotezę panspermii.

Warianty hipotezy

W II połowie XIX wieku Hermann Richter zaproponował hipotezę kosmozoidów – mikroskopijnych zarodków, które dostały się na Ziemię przez meteoryty i „rozsiały” na niej życie.

Hipoteza panwitalizmu postulowała, że życie istniało od zawsze – jednak jest to niezgodne z obecnie przyjętym standardowym modelem kosmologicznym opartym na Wielkim Wybuchu.

Przypadkowa panspermia zwana też „teorią śmietnika” to hipoteza postawiona przez Thomasa Golda zakładająca, że życie powstało z odpadów cywilizacji pozaziemskiej.

Ukierunkowana panspermia (sterowana panspermia) zakłada, że inteligentne formy życia wysłały celowo bakterie na Ziemię. Zrobiły to w specjalnych statkach-tarczach chroniących życie przed promieniowaniem kosmicznym. Ta modyfikacja hipotezy unika problemu, zabójczego dla życia promieniowania kosmicznego. Innym pomysłem jest opracowanie ukierunkowanej panspermii z Ziemi, aby zasiać nowe systemy planetarne życiem dzięki wprowadzonym gatunkom mikroorganizmów na martwych planetach.

Zobacz też

Przypisy

  1. Margaret R O’Leary, Anaxagoras and the Origin of Panspermia Theory, New York: iUniverse publishing Group, 2008, ISBN 978-0-595-49596-2, OCLC 757322661.
  2. The British Association Meeting at Edinburgh, „Nature”, 4 (92), 1871, s. 261–278, DOI10.1038/004261a0, Cytat: we must regard it as probably to the highest degree that there are countless seed-bearing meteoritic stones moving through space. (William Thomson, „Inaugural Address to the British Association Edinburgh”, s. 270) (ang.).
  3. Arrhenius, S. (1908) Worlds in the Making: The Evolution of the Universe. New York, Harper & Row.
  4. Svante Arrhenius, Encyclopædia Britannica (ang.).
  5. Leszek Czechowski, Enceladus as a place of origin of life in the Solar System, „Geological Quarterly”, 61 (1), 2018, DOI10.7306/gq.1401 (ang.).
  6. Alexei A. Sharov, Richard Gordon, Life Before Earth, „arXiv”, arXiv:1304.3381 (ang.).
  7. Bob Yirka: Researchers use Moore’s Law to calculate that life began before Earth existed. phys.org, 2013-04-18. .
  8. Massimo Di Giulio, Biological evidence against the panspermia theory, „Journal of Theoretical Biology”, 266 (4), 2010, s. 569–572, DOI10.1016/j.jtbi.2010.07.017, PMID20655931.
  9. publikacja w otwartym dostępie – możesz ją przeczytać F.J. Mitchell, W.L Ellis. Surveyor III: Bacterium isolated from lunar-retrieved TV camera. „Proceedings of the Lunar Science Conference”. 2. s. 2721–2733. Bibcode1971LPSC....2.2721M. 
  10. Leonard David: Moon Microbe Mystery Finally Solved. SPACE.com, 2011-05-02. .
  11. DNA survives critical entry into Earth’s atmosphere. Uniwersytet w Zurychu, 2014-11-26. . . (ang.).
  12. Katarzyna Inngram: Życie nie z tej Ziemi. 27 stycznia 2011. .
  13. Heller i Pabjan 2014 ↓, s. 221.
  14. Heller i Pabjan 2014 ↓, s. 221–222.
  15. Thomas Gold, Cosmic Garbage, Air Force and Space Digest, 65, 1960.
  16. Piotr Cielebiaś: Życie na Ziemi pochodzi od... obcej cywilizacji?. 2012-08-28. . .
  17. Claudius Gros, Developing ecospheres on transiently habitable planets: the genesis project, „Astrophysics and Space Science”, 361 (10), 2016, s. 324, DOI10.1007/s10509-016-2911-0, ISSN 1572-946X (ang.).
  18. Colonising the galaxy is hard. Why not send bacteria instead?, „The Economist”, 12 kwietnia 2018, ISSN 0013-0613 .

Bibliografia

Linki zewnętrzne