Stereocilia

ในหูชั้นในของสัตว์ต่าง ๆ มากมาย Stereocilia เป็นออร์แกเนลล์ของเซลล์ขนซึ่งตอบสนองต่อการไหวของน้ำเพื่อทำหน้าที่ต่าง ๆ รวมทั้งการได้ยินและการทรงตัว Stereocilia ยาวประมาณ 10-50 ไมโครเมตร และมีลักษณะบางอย่างคล้าย ๆ กับ microvilli เซลล์ขนจะแปลความดันในน้ำและสิ่งเร้าเชิงกลอื่น ๆ ให้เป็นกระแสไฟฟ้าผ่าน microvilli จำนวนมากซึ่งเป็นลำตัวของ stereocilia มี Stereocilia ทั้งในระบบการได้ยินและระบบการทรงตัว (Vestibular system)

Stereocilia ของหูชั้นในของกบ

สัณฐานวิทยา

คล้ายกับขนที่ยื่นออกมาจากเซลล์ stereocilia จะตั้งเป็นมัด ๆ มัดหนึ่งมีขน 30-300 อัน ในมัดแต่ละมัด stereocilia มักจะจัดเป็นแถว ๆ ที่สูงยิ่ง ๆ ขึ้นไปคล้าย ๆ กับบันได โครงสร้างหลักใน stereocilia ก็คือ ใยโปรตีน actin ๆ ที่เชื่อมยึดกัน ซึ่งสามารถเกิดใหม่ทุก 48 ชม. ใย actin มีด้านบวก (ที่มีลักษณะเป็นเงี่ยงปลา) ที่ยอด และด้านลบ (ที่มีลักษณะแหลม) ที่ฐานและสามารถยาวถึง 120 ไมโครเมตร

โครงสร้างที่เรียกว่าใยเชื่อมปลาย (tip link) จะเชื่อมยอดของ stereocilia ที่อยู่ติดกันแถวต่อแถว เป็นใยบาง ๆ ที่วิ่งจากยอดของ stereocilia ที่สั้นกว่าไปยังด้านข้างของ stereocilia ที่ยาวกว่าติดกัน ใยเชื่อมปลายเป็นเหมือนสปริงตัวเล็ก ๆ ซึ่งเมื่อยืดออก ก็จะเปิดช่องไอออนที่ยอด stereocilia ให้แคตไอออนไหลผ่านเยื่อหุ้มเซลล์เข้ามาในเซลล์ขน และยังมีหน้าที่ส่งแรงต่อไปตามมัดขนและช่วยดำรงโครงสร้างของมัดขน

วิถีประสาทการได้ยิน

อวัยวะของคอร์ติผ่าและขยาย stereocilia เป็น "ขน" ที่ยื่นออกมากจากยอดของเซลล์ขนด้านใน (inner hair cell) และเซลล์ขนด้านนอก (outer hair cell)

stereocilia เป็นอวัยวะรับเสียงในสัตว์เลี้ยงลูกด้วยนมโดยอยู่เป็นแถว ๆ ที่อวัยวะของคอร์ติภายในคอเคลียของหูชั้นใน ในการได้ยิน stereocilia จะแปลพลังงานกลของคลื่นเสียงไปเป็นสัญญาณไฟฟ้าในเซลล์ขน ซึ่งในที่สุดก็จะเร้าโสตประสาท (auditory nerve) ซึ่งส่งสัญญาณต่อไปทางสมอง

Stereocilia ประกอบด้วยไซโทพลาซึมที่มีมัดใย actin เชื่อมรัดกันไว้ โดย actin จะยึดอยู่กับฐานที่เป็นเครือข่ายใย ซึ่งเป็นด้านบนของเยื่อหุ้มเซลล์ที่ลาดจากต่ำไปสูง เมื่อคลื่นเสียงกระจายไปในคอเคลีย การเคลื่อนไหวของน้ำ endolymph ก็จะเบนตัว stereocilia ถ้าไหวไปทาง stereocilia ที่สูงกว่า ก็จะเกิดแรงดึงที่ใยเชื่อมปลาย แล้วเปิดช่องการถ่ายโอนที่อยู่ใกล้ ๆ ยอดโดยแรงกล แคตไอออนจากน้ำ endolymph ก็จะไหลเข้าไปในเซลล์ ทำให้เซลล์ขนลดขั้ว (depolarized) แล้วปล่อยสารสื่อประสาทไปยังปลายประสาทที่อยู่ใกล้ ๆ ซึ่งจะส่งสัญญาณไฟฟ้าไปยังระบบประสาทกลางต่อไป

วิถีประสาทการทรงตัว

ในระบบการทรงตัว (vestibular system) stereocilia จะอยู่ในอวัยวะที่เรียกว่า otolithic organs (หรือ otolitths) และหลอดกึ่งวงกลม (semicircular canals) เซลล์ขนในระบบการทรงตัวจะต่างจากระบบการได้ยินเล็กน้อย คือ เซลล์ขนในระบบการทรงตัวยังมีขนยาวที่สุดที่เรียกว่า kinocilium การเบน stereocilia ไปยัง kinocilium จะลดขั้วของเซลล์โดยมีผลเป็นการส่งสัญญาณไปทางประสาทนำเข้า การเบนออกไปจาก kinocilium จะเพิ่มขั้วของเซลล์และลดสัญญาณที่ส่งไปทางประสาทนำเข้า

ในหลอดกึ่งวงกลม เซลล์ขนจะอยู่ใน crista ampullaris โดย stereocilia จะยื่นออกไปใน ampullary cupula โดย stereocilia จะเบนไปทางเดียวกัน

ส่วนใน otoliths จะมีผลึกแคลเซียมคาร์บอเนตเล็ก ๆ ที่เรียกว่า otoconia อยู่บนเซลล์ และไม่เหมือนกับในหลอดกึ่งวงกลม kinocilia ของเซลล์ขนใน otoliths จะไม่เบนไปในทางเดียวกัน คือจะเบนไปทาง (ใน utricle) หรือไปจาก (ใน saccule) เส้นกลางที่เรียกว่า striola

การถ่ายโอนแรงกลเป็นไฟฟ้า

ในคอเคลีย แรงเฉือนระหว่างเยื่อคลุม (tectorial membrane) และเยื่อฐาน (basilar membrane) จะเบน stereocilia มีผลต่อแรงดึงที่ใยเชื่อมปลาย ซึ่งจะเปิดหรือปิดช่องไอออน คือเมื่อแรงดึงเพิ่ม ไอออนก็จะไหลผ่านเยื่อหุ้มเซลล์เข้าไปในเซลล์เพิ่ม ซึ่งทำให้เซลล์ลดขั้ว (depolarized) มีผลเป็นศักย์ไฟฟ้าที่ในที่สุดก็จะส่งทางโสตประสาทไปยังสมอง แต่ว่า ช่องที่มีลักษณะไวแรงกลเช่นนี้ก็ยังกำหนดให้แน่นอนไม่ได้

ช่องถ่ายโอนสัญญาณที่สัมพันธ์กับ stereocilia เชื่อว่า อยู่ที่ยอดสุด การเบน stereocilia ไปทางเส้นที่สูงสุดจะเพิ่มอัตราการเปิดช่องไอออน ซึ่งทำให้เซลล์ลดขั้ว เป็นการเร้าประสาทนำเข้าที่ฐานของเซลล์ขน ส่วนการเบน stereocilia ไปในทางตรงกันข้าม คือไปทางเส้นสั้นสุดจะปิดช่องถ่ายโอนสัญญาณ ในสถานการณ์นี้ เซลล์ขนจะเพิ่มขั้วและไม่เร้าใยประสาทนำเข้า

มีน้ำ 2 ชนิดที่ล้อมเซลล์ขนของหูชั้นใน endolymph เป็นน้ำที่อยู่ด้านยอดของเซลล์ โดยมีโพแทสเซียมเป็นแคตไอออนหลัก ซึ่งเชื่อว่า เป็นตัวส่งประจุไฟฟ้าเข้าไปในคอเคลีย ส่วนน้ำ Perilymph จะอยู่ที่ข้าง ๆ และฐานของเซลล์ขน แต่จะมีโพแทสเซียมต่ำและมีโซเดียมสูง

ความแตกต่างของประจุไอออนในน้ำที่อยู่รอบ ๆ ตลอดจนศักยะพัก (resting potential) ของเซลล์ขน จะสร้างความต่างศักย์ข้ามเยื่อหุ้มเซลล์ที่ยอด โดยโพแทสเซียมจะไหลเข้ามาในช่องเมื่อเปิด ซึ่งก็จะทำให้เซลล์ลดขั้วแล้วปล่อยสารสื่อประสาท อันอาจนำไปสู่การส่งกระแสประสาทในเซลล์ประสาทรับความรู้สึกที่มีไซแนปส์เชื่อมอยู่ที่ฐานของเซลล์

ความเสียหาย

Stereocilia (ตลอดจนเซลล์ขนทั้งหมด) ในสัตว์เลี้ยงลูกด้วยนมสามารถเสียหายหรือถูกทำลายได้โดยเสียงที่ดังเกิน โรค และสารพิษ และไม่สามารถจะเกิดใหม่ได้ เสียงในสิ่งแวดล้อมน่าจะมีผลเสียหายต่อการได้ยินที่สามัญที่สุด ตามข้อมูลของสำนักงานปกป้องสิ่งแวดล้อมสหรัฐ โครงสร้างหรือระเบียบของมัดขน stereocilia ที่ผิดปกติสามารถทำให้หูหนวกและสร้างปัญหาการทรงตัว ในสัตว์มีกระดูกสันหลังอื่น ถ้าเซลล์ขนเสียหาย เซลล์ค้ำจุนสามารถแบ่งตัวแล้วทดแทนเซลล์ขนที่เสียหายได้

งานศึกษาทางพันธุกรรม

ยีน methionine sulfoxide reductase B3 (MsrB3) ซึ่งเป็นเอนไซม์ที่ช่วยซ่อมโปรตีน (ที่เปลี่ยน methionine-R-sulfoxide เป็น methionine) เป็นตัวการอย่างหนึ่งที่ทำให้มัดขน stereocilia เสื่อมลงในปริมาณมาก ๆ และเป็นปัจจัยแก่สิ่งอื่น ๆ มากมายเช่น อายุครรภ์ ตลอดจนความทนทานความหนาวของพืชด้วย

แม้ว่ากระบวนการเกิดโรคยังไม่ชัดเจน แต่ก็ดูเหมือนจะสัมพันธ์กับการตายของเซลล์เนื่องกับอะพอพโทซิส การตัดต่อยีนอาศัย morpholinos เพื่อลดการแสดงออกของยีน MsrB3 ในปลาม้าลายมีผลเป็นขนเซลล์ที่สั้นกว่า บางกว่า และหนาแน่นกว่า ตลอดจน otolith ที่เกิดผิดที่ นอกจากนั้นแล้ว stereocilia จำนวนหนึ่งยังเกิดอะพอพโทซิสอีกด้วย การฉีด MsrB3 mRNA แบบปกติตามธรรมชาติ (wild-type) เข้าไป แก้ความเสียหายในการได้ยินได้ ซึ่งแสดงว่า MsrB3 ช่วยป้องกันอะพอพโทซิส

ยีนอีกอย่างหนึ่ง คือ DFNB74 ก็พบว่ามีบทบาทในการสูญการได้ยินแบบด้อย (recessive) การสูญเสียการได้ยินเนื่องจาก DFNB74 อาจจะสัมพันธ์กับความผิดปกติของไมโทคอนเดรีย และความพิการเนื่องจาก DFNB74 กับ MsrB3 ก็อาจสัมพันธ์กันด้วย งานวิจัยทางยีนเหล่านี้ได้ทำกับคนหูหนวกแบบด้อย (recessive) หลายครอบครัวที่ไม่ใช่ญาติกัน แล้วพบการกลายพันธุ์ทั้งในยีน DFNB74 และ MsrB3

stereocilia ที่เสียหายหรือผิดปกติเนื่องจากการกลายพันธุ์ของยีนบ่อยครั้งเป็นเหตุให้เสียการได้ยินและความพิการอื่น ๆ โดยสามารถสืบต่อไปยังลูกหลานได้ ในงานศึกษาเร็ว ๆ นี้ นักวิจัยได้ศึกษาหนูที่ได้กรรมพันธุ์ของยีนเซลล์ขนกลายพันธุ์เรียกว่า whirlin ซึ่งทำให้มี stereocilia สั้น ๆ อ้วน ๆ เป็นแถว ๆ เพิ่ม ที่บ่อยครั้งเซลล์จะตายหลังจากคลอด ยังไม่มีการบำบัดแก้ไขเพื่อแก้เซลล์ขนผิดปกติเช่นนี้ในมนุษย์

ในการพยายามแก้ปัญหานี้ นักวิจัยได้ใช้การบำบัดโดยยีน (gene therapy) ที่ฉีดยีนปกติเข้าไปในหูชั้นในของหนูริ่งที่มีปัญหา ซึ่งก็แก้ stereocilia ให้ยาวเป็นปกติ และกำจัดแถวขนที่เพิ่ม แต่แม้เซลล์ขนจะกลับเป็นปกติ หนูหริ่งก็ไม่ปรากฏว่าได้ยินดีขึ้นตามการทดสอบที่ทำเดือนหนึ่งและสามเดือนหลังจากการรักษา งานศึกษาต่อไป ๆ กำลังตรวจว่า ทำไมการคืนสภาพของ stereocilia จึงไม่ทำให้ได้ยินดีขึ้น

งานวิจัยปัจจุบัน

เสียงที่ดังถึงระดับอาจทำให้ stereocilia ของหูชั้นในเสียหายอย่างแก้ไขไม่ได้ แต่ก็มีงานวิจัยที่แสดงว่า อาจแก้ได้ถ้าสามารถแก้ไขหรือสร้างใหม่โปรตีนบางอย่างใน stereocilia งานศึกษานี้ใช้ปลาม้าลายเพื่อตรวจดูการเคลื่อนไหวของโปรตีนภายในเซลล์หูที่ยังมีชีวิตอยู่โดยใช้กล้องจุลทรรศน์แบบ confocal แล้วพบว่า โปรตีนใน stereocilia เคลื่อนไหวได้อย่างรวดเร็ว ซึ่งแสดงว่า การเคลื่อนไหวของโปรตีนอาจเป็นปัจจัยสำคัญมากสำหรับความสมบูรณ์ของมัดขนในหูชั้นใน งานวิจัยต่อมาพบว่า myosin และ actin เป็นโปรตีนสำคัญที่ทำให้เซลล์เคลื่อนไหวได้อย่างรวดเร็ว และ Fascin 2b ซึ่งเป็นโปรตีนที่มีบทบาทเชื่อม actin เข้าด้วยกัน เคลื่อนไหวได้เร็วยิ่งกว่านั้น การเคลื่อนไหวเรื่อย ๆ ของโปรตีนในเซลล์ ตลอดจนการเปลี่ยนทดแทนและการปรับเปลี่ยน ช่วยเซลล์แก้ไขความเสียหาย การเคลื่อนไหวเร็วของโปรตีนเหล่านี้ได้เปลี่ยนความคิดในเรื่อง stereocilia และแสดงว่า โปรตีนใน stereocilia ไม่ได้อยู่นิ่ง ๆ งานวิจัยต่อ ๆ มาหวังจะหาทางจัดการโปรตีนเหล่านี้เพื่อรักษาการได้ยินที่เสียหายในมนุษย์

เชิงอรรถและอ้างอิง

  1. Caceci, T. "VM8054 Veterinary Histology: Male Reproductive System". สืบค้นเมื่อ 2016-02-16.{{cite web}}: CS1 maint: uses authors parameter (ลิงก์)
  2. 2.0 2.1 2.2 2.3 2.4 Alberts, B; Johnson, A; Lewis, J; Raff, M; Roberts, K; Walter, P (2002). The Molecular Biology of the Cell. Garland Science Textbooks.{{cite book}}: CS1 maint: uses authors parameter (ลิงก์)
  3. 3.0 3.1 3.2 Rzadzinska, AK; Schneider, ME; Davies, C; Riordan, GP; Kachar, B (2004). "An actin molecular treadmill and myosins maintain stereocilia functional architecture and self-renewal". J. Cell Biol. 164 (6): 887–97. doi:10.1083/jcb.200310055. PMC 2172292. PMID 15024034.{{cite journal}}: CS1 maint: uses authors parameter (ลิงก์)
  4. Tsuprun, V; Santi, P (2002). "Structure of outer hair cell stereocilia side and attachment links in the chinchilla cochlea". J. Histochem. Cytochem. 50 (4): 493–502. doi:10.1177/002215540205000406. PMID 11897802.{{cite journal}}: CS1 maint: uses authors parameter (ลิงก์)
  5. Gray, Lincoln. "Chapter 10: Vestibular System: Structure and Function". Neuroscience Online: an electronic book for the neurosciences, McGovern Medical School, University of Texas. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2017-05-18. สืบค้นเมื่อ 2017-05-18.
  6. Hudspeth, A. J. (1982). "Extracellular current flow and the site of transduction by vertebrate hair cells". The Journal of neuroscience : the official journal of the Society for Neuroscience. 2 (1): 1–10. PMID 6275046.
  7. Hackney, C. M.; Furness, D. N. (1995). "Mechanotransduction in vertebrate hair cells: Structure and function of the stereociliary bundle". The American journal of physiology. 268 (1 Pt 1): C1-13. PMID 7840137.
  8. 8.0 8.1 Corey, D. P.; Hudspeth, A. J. (1979). "Ionic basis of the receptor potential in a vertebrate hair cell". Nature. 281 (5733): 675–677. doi:10.1038/281675a0. PMID 45121.
  9. Ohmori, H. (1985). "Mechano-electrical transduction currents in isolated vestibular hair cells of the chick". The Journal of Physiology. 359: 189–217. doi:10.1113/jphysiol.1985.sp015581. PMC 1193371. PMID 2582113.
  10. Bosher, S. K.; Warren, R. L. (1978). "Very low calcium content of cochlear endolymph, an extracellular fluid". Nature. 273 (5661): 377–378. doi:10.1038/273377a0. PMID 661948.
  11. Jia, Shuping (2009). "Fate of mammalian cochlear hair cells and stereocilia after loss of the stereocilia". Journal of Neuroscience. 29 (48): 15277–85. doi:10.1523/jneurosci.3231-09.2009. PMC 2795320. PMID 19955380.
  12. 12.0 12.1 Kwon, Tae-Jun (2013-11-03). "Methionine sulfoxide reductase B3 deficiency causes hearing loss due to stereocilia degeneration and apoptotic cell death in cochlear hair cells". Oxford Journals. 23: 1591–1601. doi:10.1093/hmg/ddt549. สืบค้นเมื่อ 2015-12-03.
  13. Lee, Hwajin (2012). "DNA methylation shows genome-wide association of NFIX, RAPGEF2 and MSRB3 with gestational age at birth". Oxford Journals. 41: 188–99. doi:10.1093/ije/dyr237. PMC 3304532. PMID 22422452. สืบค้นเมื่อ 2015-12-03.
  14. Kwon, Sun Jae; Kwon, Soon Il; Bae, Min Seok; Cho, Eun Ju; Park, Ohkmae K. (2007-12-01). "Role of the Methionine Sulfoxide Reductase MsrB3 in Cold Acclimation in Arabidopsis". Plant and Cell Physiology. 48 (12): 1713–1723. doi:10.1093/pcp/pcm143. ISSN 0032-0781. PMID 17956860.
  15. Shen, Xiaofang; Liu, Fei; Wang, Yingzhi; Wang, Huijun; Ma, Jing; Xia, Wenjun; Zhang, Jin; Jiang, Nan; Sun, Shaoyang. "Down-regulation of msrb3 and destruction of normal auditory system development through hair cell apoptosis in zebrafish". The International Journal of Developmental Biology. 59 (4-5-6): 195–203. doi:10.1387/ijdb.140200md.
  16. Waryah, Am; Rehman, A; Ahmed, Zm; Bashir, Z-H; Khan, Sy; Zafar, Au; Riazuddin, S; Friedman, Tb; Riazuddin, S (2009-09-01). "DFNB74, a novel autosomal recessive nonsyndromic hearing impairment locus on chromosome 12q14.2-q15". Clinical Genetics. 76 (3): 270–275. doi:10.1111/j.1399-0004.2009.01209.x. ISSN 1399-0004.
  17. Ahmed, Zubair M.; Yousaf, Rizwan; Lee, Byung Cheon; Khan, Shaheen N.; Lee, Sue; Lee, Kwanghyuk; Husnain, Tayyab; Rehman, Atteeq Ur; Bonneux, Sarah (2011-01-07). "Functional Null Mutations of MSRB3 Encoding Methionine Sulfoxide Reductase Are Associated with Human Deafness DFNB74". American Journal of Human Genetics. 88 (1): 19–29. doi:10.1016/j.ajhg.2010.11.010. ISSN 0002-9297. PMC 3014371. PMID 21185009.
  18. "Gene therapy corrects stereocilia defects in the inner ears of mice with inherited deafness". www.nidcd.nih.gov. คลังข้อมูลเก่าเก็บจากแหล่งเดิมเมื่อ 2016-03-24. สืบค้นเมื่อ 2015-12-04.
  19. Hwang, Philsang; Chou, Shih-Wei; Chen, Zongwei; McDermott, Brian M. "The Stereociliary Paracrystal Is a Dynamic Cytoskeletal Scaffold In Vivo". Cell Reports. 13 (7): 1287–1294. doi:10.1016/j.celrep.2015.10.003. ISSN 2211-1247. PMC 4654971. PMID 26549442.