Partially ordered group

In this article, we are going to delve into the fascinating world of Partially ordered group. Whether you're a history buff, a literature lover, a music fan, or just interested in learning something new, Partially ordered group has something to offer for everyone. We will explore its origins, its impacts on contemporary society, and its possible future developments. From its ancestral roots to its relevance today, Partially ordered group is a topic that never ceases to surprise and fascinate those who delve into its study. Get ready to immerse yourself in an exciting journey through this exciting universe!

In abstract algebra, a partially ordered group is a group (G, +) equipped with a partial order "≤" that is translation-invariant; in other words, "≤" has the property that, for all a, b, and g in G, if ab then a + gb + g and g + ag + b.

An element x of G is called positive if 0 ≤ x. The set of elements 0 ≤ x is often denoted with G+, and is called the positive cone of G.

By translation invariance, we have ab if and only if 0 ≤ -a + b. So we can reduce the partial order to a monadic property: ab if and only if -a + bG+.

For the general group G, the existence of a positive cone specifies an order on G. A group G is a partially orderable group if and only if there exists a subset H (which is G+) of G such that:

  • 0 ∈ H
  • if aH and bH then a + bH
  • if aH then -x + a + xH for each x of G
  • if aH and -aH then a = 0

A partially ordered group G with positive cone G+ is said to be unperforated if n · gG+ for some positive integer n implies gG+. Being unperforated means there is no "gap" in the positive cone G+.

If the order on the group is a linear order, then it is said to be a linearly ordered group. If the order on the group is a lattice order, i.e. any two elements have a least upper bound, then it is a lattice-ordered group (shortly l-group, though usually typeset with a script l: ℓ-group).

A Riesz group is an unperforated partially ordered group with a property slightly weaker than being a lattice-ordered group. Namely, a Riesz group satisfies the Riesz interpolation property: if x1, x2, y1, y2 are elements of G and xiyj, then there exists zG such that xizyj.

If G and H are two partially ordered groups, a map from G to H is a morphism of partially ordered groups if it is both a group homomorphism and a monotonic function. The partially ordered groups, together with this notion of morphism, form a category.

Partially ordered groups are used in the definition of valuations of fields.

Examples

  • The integers with their usual order
  • An ordered vector space is a partially ordered group
  • A Riesz space is a lattice-ordered group
  • A typical example of a partially ordered group is Zn, where the group operation is componentwise addition, and we write (a1,...,an) ≤ (b1,...,bn) if and only if aibi (in the usual order of integers) for all i = 1,..., n.
  • More generally, if G is a partially ordered group and X is some set, then the set of all functions from X to G is again a partially ordered group: all operations are performed componentwise. Furthermore, every subgroup of G is a partially ordered group: it inherits the order from G.
  • If A is an approximately finite-dimensional C*-algebra, or more generally, if A is a stably finite unital C*-algebra, then K0(A) is a partially ordered abelian group. (Elliott, 1976)

Properties

Archimedean

The Archimedean property of the real numbers can be generalized to partially ordered groups.

Property: A partially ordered group is called Archimedean when for any , if and for all then . Equivalently, when , then for any , there is some such that .

Integrally closed

A partially ordered group G is called integrally closed if for all elements a and b of G, if anb for all natural n then a ≤ 1.

This property is somewhat stronger than the fact that a partially ordered group is Archimedean, though for a lattice-ordered group to be integrally closed and to be Archimedean is equivalent. There is a theorem that every integrally closed directed group is already abelian. This has to do with the fact that a directed group is embeddable into a complete lattice-ordered group if and only if it is integrally closed.

See also

Note

References

  • M. Anderson and T. Feil, Lattice Ordered Groups: an Introduction, D. Reidel, 1988.
  • Birkhoff, Garrett (1942). "Lattice-Ordered Groups". The Annals of Mathematics. 43 (2): 313. doi:10.2307/1968871. ISSN 0003-486X.
  • M. R. Darnel, The Theory of Lattice-Ordered Groups, Lecture Notes in Pure and Applied Mathematics 187, Marcel Dekker, 1995.
  • L. Fuchs, Partially Ordered Algebraic Systems, Pergamon Press, 1963.
  • Glass, A. M. W. (1982). Ordered Permutation Groups. doi:10.1017/CBO9780511721243. ISBN 9780521241908.
  • Glass, A. M. W. (1999). Partially Ordered Groups. ISBN 981449609X.
  • V. M. Kopytov and A. I. Kokorin (trans. by D. Louvish), Fully Ordered Groups, Halsted Press (John Wiley & Sons), 1974.
  • V. M. Kopytov and N. Ya. Medvedev, Right-ordered groups, Siberian School of Algebra and Logic, Consultants Bureau, 1996.
  • Kopytov, V. M.; Medvedev, N. Ya. (1994). The Theory of Lattice-Ordered Groups. doi:10.1007/978-94-015-8304-6. ISBN 978-90-481-4474-7.
  • R. B. Mura and A. Rhemtulla, Orderable groups, Lecture Notes in Pure and Applied Mathematics 27, Marcel Dekker, 1977.
  • Lattices and Ordered Algebraic Structures. Universitext. 2005. doi:10.1007/b139095. ISBN 1-85233-905-5., chap. 9.
  • Elliott, George A. (1976). "On the classification of inductive limits of sequences of semisimple finite-dimensional algebras". Journal of Algebra. 38: 29–44. doi:10.1016/0021-8693(76)90242-8.

Further reading

Everett, C. J.; Ulam, S. (1945). "On Ordered Groups". Transactions of the American Mathematical Society. 57 (2): 208–216. doi:10.2307/1990202. JSTOR 1990202.

External links