Experimento de Geiger-Marsden

No artigo a seguir, exploraremos o tópico Experimento de Geiger-Marsden de diferentes perspectivas e abordagens. _Var1 é um tema que tem suscitado interesse e debate ao longo do tempo, e a sua relevância e impacto estende-se a diversas áreas da vida quotidiana. Através de uma análise detalhada e exaustiva, daremos uma olhada na história, tendências atuais e futuro de Experimento de Geiger-Marsden, bem como sua influência na sociedade em geral. Com entrevistas com especialistas, dados relevantes e exemplos ilustrativos, pretendemos oferecer uma visão completa e esclarecedora deste fascinante e importante tema.

Comparação entre os resultados esperados para o experimento de Geiger–Marsden segundo o modelo de Thomson (figura superior) e segundo o modelo de Rutherford (figura inferior). É importante observar que a figura não está em escala, pois o núcleo atômico é muito menor do que a eletrosfera.

O experimento de Geiger–Marsden, também conhecido como experimento da folha de ouro ou experimento de Rutherford, foi uma experiência científica realizada por Hans Geiger e Ernest Marsden em 1909 com o objetivo de investigar a estrutura do átomo. O experimento foi realizado sob a supervisão de Ernest Rutherford nos laboratórios de Física da Universidade de Manchester, no Reino Unido. Os resultados do experimento demonstraram pela primeira vez a existência do núcleo atômico, o que não era consistente com o modelo atômico de Thomson, proposto em 1904 por Joseph John Thomson. O experimento de Rutherford consistiu em um feixe de partículas alfa gerados pelo decaimento radioativo do radônio, normalmente executado em uma folha de ouro muito fina em uma câmara evacuada.

História

Ernest Rutherford um dos 12 filhos de uma família modesta de fazendeiros na Nova Zelândia. Passou a maior parte de sua vida profissional nas universidades de Montreal, Canadá (1895 – 1898), Manchester (1898 – 1907) e Cambridge (1919 – 1937), Inglaterra. Rutherford descobriu e nomeou as radiações alfa e beta, descobriu o núcleo do átomo e o próton e ainda sugeriu a existência do nêutron, realizou a primeira transmutação da história e ganhou o Prêmio Nobel de Química, em 1908 (com apenas 37 anos), ao explicar a radioatividade.

Em 1908, Rutherford lecionava na Universidade de Manchester, onde tinha uma série de alunos brilhantes, dentre eles, Johannes (Hans) Wilhelm Geiger (1882 – 1945) e Ernest Marsden. Pediu aos dois que fizessem o que ficou conhecido como experimento de Geiger-Marsden, que consistia em bombardear uma folha finíssima de ouro com radiação alfa e medir o espalhamento dessas partículas.

Rutherford relembrou o momento em que ouvira os resultados, na escada da universidade: “Foi o momento mais extraordinário da minha vida. Era como se bombardeassem uma folha de papel com obuses de quarenta milímetros e alguns deles ricocheteassem de volta”.

Foi o que aconteceu. A grande maioria das partículas alfa atravessava a folha de ouro quase sem desvio, como previa o modelo atômico de Thomson. O grande e surpreendente resultado foi que algumas poucas partículas (aproximadamente 1 em 20.000) eram ricocheteadas pelos átomos da folha de ouro a grandes ângulos. O experimento foi repetido usando folhas de outros materiais. Quanto maior o massa atômica do material, mais partículas eram espalhadas a grandes ângulos. Para extrair um elétron de um átomo, é necessária uma certa quantidade de energia. Da mesma forma, cada núcleon (próton ou nêutron) necessita também de grande quantidade de energia, que é da ordem de milhões de vezes. Por esse motivo, a física nuclear é denominada física de alta energia.

A física nuclear tem como objeto de estudo o núcleo atômico e suas propriedades. Os núcleos possuem propriedades que podem ser classificadas como estáticas (carga, tamanho, forma, massa, energia de ligação, spin, paridade, momentos eletromagnéticos, etc.) e dinâmicas (radioatividade, estados excitados, reações nucleares, etc.)

Estas propriedades são analisadas através de modelos nucleares que são baseados na mecânica quântica, relatividade e teoria quântica de campos. A descoberta de que os nucleons (prótons e nêutrons) são na realidade sistemas compostos, redirecionou o interesse dos físicos nucleares para a investigação dos graus de liberdade de quarks e, com isto, atualmente os domínios da pesquisa da física nuclear e da física de partículas se tornaram interligados.

De acordo com o Modelo atômico de Thomson, todas as partículas alfa deveriam atravessar a matéria. Rutherford descobriu que algumas delas eram defletidas.

Mas, se o modelo de Thomson não explicava o experimento de Geiger-Marsden, que modelo explicaria?

Se o átomo não era um pudim de passas, qual o objeto de nosso conhecimento macroscópico que mais se aproximaria da realidade invisível do submicroscópico?

Em 1904, o cientista japonês Hantaro Nagaoka (1865 – 1950) desenvolvera um modelo para o átomo baseado no planeta Saturno e de suas luas, que ficou conhecido como modelo atômico saturniano.

Imagem estilizada do modelo de Rutherford para o átomo de Lítio.

A estabilidade dos anéis de Saturno se deve ao planeta possuir uma grande massa. Analogamente, Nagaoka propôs um modelo para o átomo em que haveria um núcleo positivo massivo e, girando em torno dele, os elétrons. O modelo de Nagaoka explicava alguns experimentos, mas falhava em outros, e foi abandonado pelo cientista japonês, em 1908.

Parece que Rutherford decidiu utilizar o sistema planetário inteiro, em vez de apenas Saturno, para desenvolver seu modelo.

Rutherford: “No experimento, percebi que esta dispersão para trás deve ser o resultado de uma colisão, e quando eu fiz os cálculos, vi que era impossível obter qualquer coisa dessa ordem de grandeza a menos que você tome um sistema no qual a maior parte do massa do átomo foi concentrada em um núcleo minúsculo. Foi quando tive a ideia de um átomo com um pequeno centro de massa, levando uma carga.”

Em 1911, publicou um artigo em que descrevia seu modelo atômico. O átomo consistiria em um núcleo muito pequeno, positivamente carregado, rodeado por uma nuvem de elétrons (em forma de esfera e não de disco, como no modelo saturniano). A massa do átomo estaria quase que totalmente concentrada no núcleo. Seu modelo baseou-se no experimento de Geiger-Marsden e cálculos de espalhamento baseados em interações coulombianas. Com isso, Rutherford foi capaz de determinar uma fórmula para o espalhamento e estimar o raio atômico.

A descrição do átomo de Rutherford lançou as bases para todos os futuros modelos atômicos e o desenvolvimento da física nuclear.

Interessante que apesar de outros modelos atômicos mais modernos terem sido desenvolvidos e explicarem melhor a natureza da matéria, a imagem do átomo que vem à cabeça das pessoas é a da figura acima. E, provavelmente, o desenho nem é de Rutherford, pois, em momento nenhum de sua teoria ele fala em trajetória dos elétrons, e sim numa nuvem. Em termos quantitativos, o modelo de Rutherford estimou que o raio do núcleo do átomo de ouro devesse ser da ordem de 10−14m, ou seja, 4 ordens de grandeza menores que o átomo (o raio do átomo é da ordem de 10−10m ). Mais um motivo para Rutherford não ter desenhado nosso simpático símbolo do átomo. Para se ter uma ideia, digamos que o núcleo do átomo fosse do tamanho de uma bola pingue- pongue e fosse colocado no centro de um estádio de futebol. O átomo então seria do tamanho do estádio inteiro!

Curiosamente, a teoria eletromagnética que fundamentou todos os cálculos de Rutherford seria aquela que tornaria seu modelo teoricamente inviável. De acordo com a teoria do eletromagnetismo, cargas aceleradas emitem energia. Elétrons orbitando em torno do núcleo (o movimento circular é acelerado) deveriam perder energia mecânica e, de acordo com a física clássica, sua trajetória seria uma espiral em direção ao núcleo. Se os átomos fossem como Rutherford sugeria, toda a matéria se desintegraria em fração de segundos.

Ver também

Referências

  1. Geiger, H.; Mardsen, E (1909). «On a Diffuse Reflection of the α-Particles». Proceedings of the Royal Society, Series A (em inglês). 82: 495-500. Bibcode:1909RSPSA..82..495G. doi:10.1098/rspa.1909.0054. Consultado em 30 de março de 2012 
  2. Caruso, F.; Oguri, V (2006). Física moderna: origens clássicas e fundamentos quânticos. São Paulo: Elsevier. p. 351. ISBN 85-352-1878-5 
  3. a b c «Experimento de Geiger-Marsden.». E-Centro. Consultado em 15 de setembro de 2014 
  4. Nisenbaum, Moisés André (2013). Estrutura Atômica (PDF). 1 1 ed. 61 páginas