Hel (pierwiastek)

Obecnie Hel (pierwiastek) jest tematem będącym w centrum uwagi i debaty w różnych obszarach. Jej implikacje i reperkusje są niezwykle istotne, dlatego istotne jest jej analizowanie z różnych perspektyw. W tym artykule zbadamy różne aspekty związane z Hel (pierwiastek), badając jego wpływ na społeczeństwo, jego ewolucję w czasie i możliwe rozwiązania lub podejścia, które można rozważyć. Temat ten leży w interesie ogółu i nie można ignorować jego znaczenia, dlatego niezwykle istotne jest jego wszechstronne zrozumienie, aby móc podejmować świadome decyzje i wspierać konstruktywny dialog na ten temat.

Hel
wodór ← hel →
Wygląd
bezbarwny
hel świecący w silnym polu elektrycznym
hel świecący w silnym polu elektrycznym
Widmo emisyjne helu
Widmo emisyjne helu
Ogólne informacje
Nazwa, symbol, l.a.

hel, He, 2
(łac. helium)

Grupa, okres, blok

18 (VIIIA), 1, s

Stopień utlenienia

0

Właściwości metaliczne

gaz szlachetny

Masa atomowa

4,0026 ± 0,0001

Stan skupienia

gazowy

Gęstość

0,1785 kg/m³

Temperatura wrzenia

−268,928 °C

Numer CAS

7440-59-7

PubChem

23987

Jeżeli nie podano inaczej, dane dotyczą
warunków normalnych (0 °C, 1013,25 hPa)

Hel (He, łac. helium) – pierwiastek chemiczny o liczbie atomowej 2, z grupy helowców (gazów szlachetnych) w układzie okresowym. Jest po wodorze drugim najbardziej rozpowszechnionym pierwiastkiem we wszechświecie, jednak na Ziemi występuje wyłącznie w śladowych ilościach.

Hel stanowi ok. 23% masy wszystkich pierwiastków we Wszechświecie i na Słońcu. W skorupie ziemskiej jego zawartość wynosi 5,5 ppb (5,5×10−7%) w/w, natomiast w atmosferze – 5 ppm (5×10−4%) v/v. Pochodzi głównie z rozpadu jąder promieniotwórczych w naturalnych szeregach promieniotwórczych. W większych stężeniach występuje w gazie ziemnym. W złożach w Stanach Zjednoczonych jego zawartość dochodzi do 1%, w Europie ilość ta jest bardzo mała (z wyjątkiem Polski – do 3%). Praktycznie cały hel, który mógł pierwotnie być na Ziemi, z powodu niereaktywności nie związał się w żaden związek i uleciał z atmosfery w Kosmos.

Występuje w postaci dwóch trwałych izotopów3
He
i 4
He
. Znanych jest także kilka syntetycznych izotopów nietrwałych (T½ poniżej 1 sekundy), z których najbardziej stabilne są 6
He
i 8
He
.

Hel jest najmniej aktywnym pierwiastkiem chemicznym, z najwyższą spośród pierwiastków energią jonizacji (24,59 eV). Znane są jego związki metastabilne (np. HHeF, (HeO)(CsF) i LiHe) i krótko żyjące cząsteczki HeNe i jony He+
oraz He2+
. Tworzy też stabilne stałe związki międzycząsteczkowe, np. NeHe2 i He@H2O. Na przełomie 2016/2017 doniesiono o otrzymaniu pierwszego stałego związku helu, Na2He, który jest trwały termodynamicznie pod ciśnieniem powyżej 113 GPa (ok. 1,1×106 atm). Tworzy kryształy o strukturze fluorytu.

Nie ma żadnego znaczenia biologicznego.

Odkrycie helu

Hel odkryto najpierw na Słońcu, później na Ziemi. Podczas całkowitego zaćmienia Słońca, które miało miejsce 18 sierpnia 1868 roku i było widoczne w Indiach, astronom Pierre Janssen, badając widmo korony słonecznej, zaobserwował pomarańczowy prążek odpowiadający długości fali 587,6 nm, którego nie można było przypisać do żadnego spośród znanych wówczas pierwiastków. Ten sam prążek w widmie Słońca zaobserwował 20 października 1868 r. angielski astronom Norman Lockyer. Lockyer i angielski chemik Edward Frankland nadali nowemu pierwiastkowi – emitującemu falę o długości 587,6 nm – nazwę helium od greckiego boga słońca – Heliosa. Przez wiele lat hel był uważany za pierwiastek, który występuje na Słońcu, ale nie występuje na Ziemi. W roku 1895 William Ramsay otrzymał hel po potraktowaniu kleweitu (rudy uranowej) kwasem siarkowym. Ramsay przesłał próbkę gazu do Williama Crookesa i Normana Lockyera, którzy zidentyfikowali hel.

Hel stały

Hel jako jedyny pierwiastek pozostaje ciekły nawet w temperaturze zera bezwzględnego (pod ciśnieniem atmosferycznym) i zestala się dopiero w podwyższonym ciśnieniu. Ma najniższą temperaturę krzepnięcia spośród pierwiastków: < 0,95 K (pod ciśnieniem 26 atm). W zależności od ciśnienia hel w stanie stałym może zmieniać objętość o 30%. W temperaturze poniżej 0,2–0,4 K hel stały przechodzi przemianę fazową do formy o właściwościach nadciekłych („hel nadstały”).

Zastosowania helu

  • Hel w postaci ciekłej jest używany do chłodzenia, gdy potrzebne są ekstremalnie niskie temperatury, ze względu na bardzo niską temperaturę wrzenia. Stosuje się go m.in. do chłodzenia nadprzewodników.
  • Jako najlżejszy gaz bezpieczny (niepalny) był stosowany do wypełniania statków powietrznych lżejszych od powietrza, czyli aerostatów (balony, sterowce). Obecnie ze względu na cenę stosuje się w aerostatach najczęściej ogrzane powietrze.
  • Ze względu na niską rozpuszczalność w osoczu krwi, używany jest jako składnik mieszanki do oddychania w głębokim nurkowaniu.
  • Hel jest używany jako gaz napędowy w balonach do kontrapulsacji wewnątrzaortalnej (cewnik zakończony balonem wprowadzany jest do aorty najczęściej przez tętnicę udową, napełnianie i opróżnianie balonu gazem zgodnie z rytmem serca wspomaga niewydolne krążenie).
  • Hel w mieszaninie z tlenem może być używany do wentylacji mechanicznej pacjentów z ciężką obturacją oskrzeli. Hel ma znacznie mniejszą gęstość niż azot. Zastąpienie azotu helem obniża liczbę Reynoldsa i zmienia charakter przepływu gazów w drogach oddechowych z turbulentnego na laminarny, co istotnie obniża opory przepływu. Metoda ma charakter eksperymentalny i nie została wdrożona do powszechnej praktyki klinicznej.
  • Hel dostarczony do płuc powoduje zmianę wysokości głosu, ponieważ częstość drgań strun głosowych w komorze rezonansowej, jaką jest krtań, zależy od gęstości ośrodka, w którym te drgania zachodzą (prędkość dźwięku w helu jest ok. 3 razy większa niż w powietrzu). Przeciwny efekt ma wdychanie sześciofluorku siarki. Wdychanie większych ilości helu może prowadzić do utraty przytomności, a nawet śmierci.
  • Hipotetycznie izotop 3
    He
    może zostać wykorzystany w kontrolowanej reakcji termojądrowej z deuterem do uzyskiwania energii bez powstawania niepożądanych odpadów promieniotwórczych. Na Ziemi 3
    He
    występuje jedynie śladowo, natomiast znaczne ilości mogą występować w gruncie księżycowym, w związku z czym rozważane są projekty jego wydobycia i transportu z Księżyca na Ziemię.

Otrzymywanie helu

Polskie Górnictwo Naftowe i Gazownictwo posiada jedyną w Unii Europejskiej instalację do pozyskiwania helu w odazotowni gazu ziemnego w Odolanowie i w okolicach Grodziska Wielkopolskiego oraz w instalacji membranowej przy kopalni Kościan-Brońsko; ostateczne oczyszczenie przeprowadzane jest w Odolanowie. W 2012 roku zakończyła się dwuletnia, warta 27,7 mln zł modernizacja, która poprawiła ergonomiczność oraz o ok. 30% wydajność instalacji. Dzięki niej Polska jest jednym z sześciu krajów na świecie produkujących hel. Wśród głównych odbiorców są: Austria, Francja, Niemcy, Szwajcaria, Turcja, Wielka Brytania, kraje bałkańskie.

Zobacz też

Uwagi

  1. Podana wartość stanowi przybliżoną standardową względną masę atomową (ang. abridged standard atomic weight) publikowaną wraz ze standardową względną masą atomową, która wynosi 4,002602 ± 0,000002 (patrz: publikacja w otwartym dostępie – możesz ją przeczytać Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603 (ang.)). Znane są próbki geologiczne, w których pierwiastek ten ma skład izotopowy odbiegający od występującego w większości źródeł naturalnych. Masa atomowa pierwiastka w tych próbkach może więc różnić się od podanej w stopniu większym niż wskazana niepewność (patrz: publikacja w otwartym dostępie – możesz ją przeczytać Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603 (ang.)). Duże różnice w składzie izotopowym tego pierwiastka w źródłach naturalnych nie pozwalają na podanie wartości masy atomowej z większą dokładnością (patrz: publikacja w otwartym dostępie – możesz ją przeczytać Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI: 10.1515/pac-2019-0603 (ang.)).

Przypisy

  1. a b c CRC Handbook of Chemistry and Physics, William M. Haynes (red.), wyd. 97, Boca Raton: CRC Press, 2016, s. 4-64, 4-117, ISBN 978-1-4987-5429-3 (ang.).
  2. Thomas Prohaska i inni, Standard atomic weights of the elements 2021 (IUPAC Technical Report), „Pure and Applied Chemistry”, 94 (5), 2021, s. 573–600, DOI10.1515/pac-2019-0603 (ang.).
  3. Charles N. Singman, Atomic volume and allotropy of the elements, „Journal of Chemical Education”, 61 (2), 1984, s. 137, DOI10.1021/ed061p137 (ang.).
  4. Hel, Encyklopedia PWN .
  5. Helium: geological information , Web Elements (ang.).
  6. a b c d Xiao Dong i inni, A stable compound of helium and sodium at high pressure, „Nature Chemistry”, 9 (5), 2017, s. 440–445, DOI10.1038/nchem.2716, PMID28430195 (ang.).
  7. Periodic Table: Helium Lawrence Livermore National Laboratory.
  8. Ignacy Eichstaedt: Księga pierwiastków. Warszawa: Wiedza Powszechna, 1973, s. 68. OCLC 839118859.
  9. Ignacy Eichstaedt: Księga pierwiastków. Warszawa: Wiedza Powszechna, 1973, s. 73. OCLC 839118859.
  10. C.R. Hammond, The Elements. Helium, CRC Handbook of Chemistry and Physics, David R. Lide (red.), wyd. 88, Boca Raton: CRC Press, 2007, s. 4-16 – 4-17, ISBN 978-0-8493-0488-0 (ang.).
  11. E. Kim, M.H.W. Chan, Probable observation of a supersolid helium phase, „Nature”, 427 (6971), 2004, s. 225–227, DOI10.1038/nature02220, PMID14724632 (ang.).
  12. E. Kim, M.H.W. Chan, Observation of superflow in solid helium, „Science”, 305 (5692), 2004, s. 1941–1944, DOI10.1126/science.1101501, ISSN 1095-9203, PMID15345778 (ang.).
  13. Henry R. Glyde, Defects and perfect flows, „Nature”, 444 (7120), 2006, s. 693–695, DOI10.1038/444693a, PMID17151649 (ang.).
  14. Kontrapulsacja wewnątrzaortalna. . .
  15. Neil R. Maclntyre, Richard D. Branson, Wentylacja Mechaniczna, ADI, 2008, ISBN 83-900299-2-8.
  16. a b Czy wdychając hel do balonów jesteśmy narażeni na niebezpieczeństwo? , www.hel.sklep.pl .
  17. a b Inhaling Helium: Is It Really That Dangerous? , Healthline, 4 lutego 2020 (ang.).
  18. Heavy Gas – Sulfur Hexafluoride , Steve Spangler Science (ang.).
  19. Helium Dangers , balloonartists.com.au .
  20. Andrzej Kublik: Rosja i Chiny walczą o energię z Księżyca. Gazeta Wyborcza, 2006-04-13. .
  21. Mariusz Błoński: Wyścig po paliwo z kosmosu. Kopalniawiedzy.pl, 15-12-2006. .
  22. Leszek Kadej: Hel - najcenniejsza domieszka w gazie ziemnym. Wysokie Napięcie, 2018-10-02.
  23. Michał Duszczyk, PGNiG umacnia pozycję głównego producenta helu, „Dziennik Gazeta Prawna”, 36 (3174), 21 lutego 2012, s. A12, ISSN 2080-6744.