Argon

V tomto článku se budeme věnovat problematice Argon, která se dnes stala velmi aktuální. Argon je téma, které vzbudilo zájem různých sektorů, jak na národní, tak na mezinárodní úrovni. V průběhu let se Argon stal předmětem studií a výzkumů, které přinesly překvapivé výsledky. V tomto smyslu je vhodné prozkoumat různé aspekty obklopující Argon, stejně jako jeho důsledky a důsledky. Z multidisciplinárního přístupu prozkoumáme různé úhly pohledu, které Argon nabízí, s cílem prohloubit naše porozumění a poskytnout komplexní vizi tohoto velmi relevantního tématu.

Argon
  3s2 3p6
40 Ar
18
 
               
               
                                   
                                   
                                                               
                                                               
↓ Periodická tabulka ↓
Zářící argon

Zářící argon

Obecné
Název, značka, číslo Argon, Ar, 18
Cizojazyčné názvy lat. Argon
Skupina, perioda, blok 18. skupina, 3. perioda, blok p
Chemická skupina Vzácné plyny
Koncentrace v zemské kůře 0,04 až 4 ppm
Koncentrace v mořské vodě 0,6 mg/l
Vzhled Bezbarvý plyn
Identifikace
Registrační číslo CAS
Atomové vlastnosti
Relativní atomová hmotnost 39,944
Atomový poloměr 71 pm
Kovalentní poloměr 106 pm
Van der Waalsův poloměr 188 pm
Elektronová konfigurace 3s2 3p6
Ionizační energie
První 1520,6 KJ/mol
Druhá 2665,8 KJ/mol
Třetí 3931 KJ/mol
Látkové vlastnosti
Krystalografická soustava Krychlová plošně centrovaná
Molární objem 22,56×10−6 m3/mol (pevný)

22,4134×10−3 m3/mol (plynný)

Mechanické vlastnosti
Hustota 1,7838 kg/m3
Skupenství Plynné
Tlak syté páry 100 Pa při 53K
Rychlost zvuku 323 m/s
Termické vlastnosti
Tepelná vodivost 17,72×10−3 W⋅m−1⋅K−1
Termodynamické vlastnosti
Teplota tání −189,35 °C (83,8 K)
Teplota varu −185,85 °C (87,3 K)
Skupenské teplo tání 1,1084 KJ/mol
Skupenské teplo varu 6,274 KJ/mol
Měrná tepelná kapacita 520 Jkg−1K−1
Elektromagnetické vlastnosti
Magnetické chování Diamagnetický
Bezpečnost
GHS04 – plyny pod tlakem
GHS04

Varování
Izotopy
I V (%) S T1/2 Z E (MeV) P
36Ar 0,337% je stabilní s 18 neutrony
37Ar umělý 35,011 dne ε 0,813 87 37Cl
38Ar 0,063% je stabilní s 20 neutrony
39Ar umělý 269 roků β 0,565 39K
40Ar 99,600% je stabilní s 22 neutrony
41Ar umělý 109,34 min β 2,49 41K
42Ar umělý 32,9 roků β 0,600 42K
Není-li uvedeno jinak, jsou použity
jednotky SI a STP (25 °C, 100 kPa).
Ne
Chlor Ar

Kr

Argon, (chemická značka Ar, latinsky Argon) je chemický prvek patřící mezi vzácné plyny, které tvoří přibližně 1 % zemské atmosféry.

Základní fyzikálně-chemické vlastnosti

Jedna ze dvou doposud známých sloučenin argonu – HArF

Bezbarvý plyn, bez chuti a zápachu, velmi málo reaktivní. V 1 litru vody se rozpustí 33,6 ml argonu (je dokonce rozpustnější než kyslík). Ještě o něco lépe se rozpouští v nepolárních organických rozpouštědlech. Argon lze adsorbovat na aktivním uhlí.

Argon se stejně jako ostatní vzácné plyny snadno ionizuje a v ionizovaném stavu září. Toho se využívá v osvětlovací technice. Argon září při větší koncentraci červeně, při nižších přechází přes fialovou a modrou až k bílé barvě.

V roce 2000 byla připravena první sloučenina argonu - hydrofluorid argonu, HArF. Syntéza byla provedena reakcí argonu s fluorovodíkem v matrici z jodidu cesného při teplotě 8 K. Sloučenina je stabilní do teploty 40 K.

Kousek tajícího argonu

Historický vývoj

Henry CavendishJoseph Priestley předpokládali přítomnost argonu ve vzduchu již v roce 1785, když se jim podařilo ze vzduchu odstranit kyslík (reakcí s rozžhavenou mědí), oxid uhličitý (rozpuštěním ve vodě) a dusík (působením elektrických výbojů na jeho směs s kyslíkem, při čemž vznikají oxidy dusíku a ty se rozpouští ve vodě za vzniku kyseliny dusičné). Plyn, který v nádobě zůstal, je atmosférický argon, který obsahuje pouze další vzácné plyny.

Objev argonu je oficiálně připisován lordu RayleighoviWilliamu Ramsayovi roku 1894, kteří prvek objevili stejným způsobem jako Henry CavendishJoseph Priestley a pomocí zkoumání spektrálních čar došli k názoru, že se jedná o nový prvek a pojmenovali ho podle jeho netečnosti argon – líný.

Výskyt a získávání

Argon je hojně zastoupen v zemské atmosféře. Tvoří přibližně její 1 % (ve 100 l vzduchu je 934 ml argonu) a je proto poměrně snadno získáván frakční destilací zkapalněného vzduchu. Atmosférický argon lze získat způsobem popsaným v historickém vývoji nebo frakční adsorpcí na aktivní uhlí při teplotě kapalného vzduchu.

Využití

Argonová výbojka
  • Inertních vlastností argonu se využívá především při svařování kovů, kde tvoří ochrannou atmosféru kolem roztaveného kovu a zabraňuje vzniku oxidůnitridů a tím zhoršování mechanických vlastností svaru.
  • V metalurgii se ochranná atmosféra argonu nasazuje při tavení slitin hliníku, titanu, mědi, platinových kovů a dalších.
  • Růst krystalů superčistého křemíkugermania pro výrobu polovodičových součástek pro výpočetní techniku se uskutečňuje v atmosféře velmi čistého argonu.
  • Argon se ve směsi s dusíkem používá jako ochranná atmosféra žárovek a jako prostředí pro uchovávání potravin. V této směsi se také používá k plnění sáčků (například brambůrků), které jsou takto ochráněny před zvlhnutím a před rozmačkáním.
  • Čistého argonu se používá ve výbojkách, elektrických obloucích a doutnavých trubicích, kde podle koncentrace dokáže vytvořit červenou, fialovou, modrou a bílou barvu.
  • Výrazný přínos pro analytickou chemii znamenal objev a technické zvládnutí práce s dlouhodobě udržitelným plazmatem, indukčně vázaným plazmatem, označovaným obvykle zkratkou ICP. Jako nejvhodnější médium pro přípravu tohoto plazmatu se ukázal právě čistý argon. Proudící plyn o průtoku 10 – 20 l/min je přitom ve speciálním hořáku buzen vysokofrekvenčním proudem o frekvenci řádově desítek MHz a příkonu 0,5 – 2 kWh. Tímto způsobem je možno udržet argonové plazma o teplotě 6 – 8000 K po téměř neomezenou dobu. V současné době se toto médium uplatňuje ve dvou analytických technikách:
  • ICP-OES neboli optická emisní spektrometrie s indukčně vázaným plazmatem, která vychází ze skutečnosti, že při teplotě nad 6 000 K je vybuzena velká většina emisních čar ve spektrech prvků. Analyzovaný roztok je dávkován do plazmatu, kde se okamžitě odpaří a dojde k disociaci všech chemických vazeb. Kvalitním monochromátorem jsou pak monitorovány úseky emisního spektra, ve kterých se nacházejí emisní linie analyzovaných prvků. Změřená intenzita emitovaného záření o vlnové délce emisní line je úměrná koncentraci měřeného prvku v roztoku.
  • ICP-MS neboli hmotnostní spektrometrie s indukčně vázaným plazmatem, kde se využívá faktu, že většina atomů, které se k plazmatu dostanou, je vysokou energií toho prostředí ionizována za vzniku iontů M+. Vzniklé ionty jsou poměrně komplikovaným systémem přechodových komor převedeny do prostředí o tlaku řádově 10−5 Torr a dále do klasického kvadrupolového analyzátoru. Analyzátor provede několik set až několik tisíc skenů počtu iontů na zvolených hodnotách hmotností atomů a vyhodnotí obsahy prvků v měřeném roztoku na základě získané intenzity signálu.

Odkazy

Reference

  1. a b Argon. pubchem.ncbi.nlm.nih.gov . PubChem . Dostupné online. (anglicky) 
  2. RÄSÄNEN, Markku; KHRIACHTCHEV, Leonid; PETTERSSON, Mika. http://www.nature.com/doifinder/10.1038/35022551. Nature. Roč. 406, čís. 6798, s. 874–876. Dostupné online. DOI 10.1038/35022551. 

Literatura

  • Cotton F.A., Wilkinson J.:Anorganická chemie, souborné zpracování pro pokročilé, ACADEMIA, Praha 1973
  • Holzbecher Z.:Analytická chemie, SNTL, Praha 1974
  • Dr. Heinrich Remy, Anorganická chemie 1. díl, 1. vydání 1961
  • N. N. Greenwood – A. Earnshaw, Chemie prvků 1. díl, 1. vydání 1993 ISBN 80-85427-38-9

Externí odkazy